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Abstract: In this paper we examine the effectiveness of ABCs and PML in
truncating FEM mesh in polar coordinates. The model problem is based on the
scattering of a plane wave by a conducting cylinder. The error is measured using L,
norm on a surface.

1. Introduction

Unbounded problems have been a challenge to computation with Finite Element
Method (FEM) to solve problems such as radiation/scattering. One must prevent outgoing
waves from reflecting from an artificial boundary introduced in order to limit the number of
unknowns. Because of the importance of the subject many approaches have been proposed
and the research is ongoing.

The most common approach is to define boundary operators on the artificial
boundary. In some sense, the operators are designed to replace the Sommerfeld radiation
condition. Over the past years approximated Absorbing Boundary Conditions (ABCs) have
received most of the attention from the FEM community . This is justified by the fact that
these ABCs are local operators that preserve the sparsity of the stiffness matrix. In
computational electromagnetics two classes of ABCs have proven especially important.
They are those proposed by Bayliss-Turkel and Engquist-Majda [1].

The Perfectly Matched Layer (PML) is a new approach that has been the focus of
extensive research in this area of mesh truncation. This new technique can be interpreted as
a lossy medium, the PML, that can be matched to the interior domain for all frequencies
and all angles less than the grazing incidence. Since the mesh must extend to the PML
region it also has to be truncated. However, the problem becomes simpler once the wave
amplitude is supposed to decay very fast.

Our goal in this paper is to investigate the effectiveness of ABCs versus PML in
truncating the domain in FEM solutions of the scalar Helmholtz equation. To this end, we
first present a brief summary of a model problem and the schema used to truncate the
domain. Then the model problem is examined for a plane wave scattered by a cylinder.
Finally results and conclusions are presented.
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2. Two Dimensional Model Problem

Assume a scattering problem with z-invariant electromagnetic field. In this case, the
governing equation is the scalar Helmholtz equation

V-Vu+k*u=0 (D)

where u denote either the z component of the electric or magnetic field and k=4 ¢, .

We define u =u, +u, where u; is a given incident wave and us is the unknown scattered
field.

For scatterers bounded by perfect conductors the boundary conditions are u =0 for
E, and du/on = 0 for H, on the boundary of the scatterer, I's. The behavior of us at infinity is
specified by the Sommerfeld radiation condition.

To solve this problem using FEM the unbounded domain is truncated by an artificial
boundary, T",. Next we assume that the Sommerfeld condition can be replaced by

é—'f—’-+Bu, =0 onT, (2)
op
where B is an operator. In this situation the following weak form is used to find an
approximation for u in the finite element framework [2]

du;
Vu. k2 =—| y=2
J;_ECVV Vu, —k*vu,)dQ+ l avBu:dl" "v . dar 3

where v is the test function. Our goal is to examine the error introduced in the FEM solution
due to approximations enforced by I'..

3. Mesh Truncation

We now consider the techniques ABCs and PML to truncate the FEM mesh.
3.1 Summary of 2D ABCs

We selected the two most widely used ABCs for computational electromagnetics.
They can be written as

g—:— =a(p)u+p(p)

Bzu‘

39-5- on Fa (4)

The most common ABC on circular boundaries is the second order Bayliss and
Turkel condition (BT?2). Written in the form (4) it corresponds to

k*p-3/8p— j3k/2 1
d = 5
1+ jkp and  A(p) 2p(1+ jkp) ®

a(p)=

Another well’known sequence of ABCs are those proposed by Engquist-Majda [3).
Their second-order condition (EM2) at a circular boundary can be written as (4) where

—-1-j2kp

and  B(p)=13¥2 ©6)
20

2k2p3

a(p)=
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3.2 PML in Polar Coordinates

We consider now the perfectly matched layer used as a means to truncate the FEM
mesh. This new technique can be interpreted as a special lossy material boundary layer that
is reflectionless for all frequencies and angles. The approach used to model the PML is the
complex stretched coordinates as presented in [4]. Using the complex radius

. j Jp ’ r_ _ aﬁ . O(p)
=p—-=| o(p)dp'=ps, and s,=7—=1-j——
ppa)p,(p)p PSp * =3 JCO
M
equation (1) in polar coordinates in the PML region can be expressed as
V-AVu+k®s,s, =0 ®)
where
* s
A= diag{-s—p- £ } 9)
S, S,

To apply the FEM we rewrite this equation back in rectangular coordinates using rotational
transformations [4]. :

4. Numerical Resuits

The computational domain for the problem of scattering by a circular boundary is
shown in Fig. 1. The scatterer has radius a . To design the mesh the relation A/h>20 is
applied in the radial and axial direction, and the elements are linear. The PML region is
defined in the annulus  Po<p<pa Wwith parameters s=1-j2 and s=1-j2(p-po)/p . The
homogeneous Dirichlet condition is imposed on the external boundary of the PML. To
solve the matrix equations the Bi-Conjugate Gradient (BiCG) method is used.

A

Figl: Geometry of the computational domain.

The far-field can be calculated using the series expansion

u*(p,0)= ia,,H,ﬁ”(kp)ef"" : (10)

n=—oco
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1 T ;
where a, =—— R,0)e "°Rd6 11
=3 ”H:(kR)L”u( e (1

H,’ is the cylindrical Hankel function of the second kind and R is the radius where we
sample the FEM solution. The series is truncated with n=10.
The error can be measured using L,-norm on the surface that is

2n
& -uf* = Jo | @(R,6) - u(R,6) * RO (12)
i corresponds to the FEM solution.

In Tables 1 and 2 we list in column A the errors calculated using (12). In the same
tables the number of iterations for convergence of the BiCG are shown in column B.

Tab. 1: Comparison when T, is at p=a+0.5A and pg=a+0.25A

ka EM2 BT2 PML

A B A B A B
1 0.0008 106 |0.0013 { 100 | 0.0025| 132
0.0050 182 10.0042 | 181 |0.0011] 235
10 0.5720 | 368 | 0.5603 | 366 | 0.2354 | 289

Tab. 2: Comparison when T, is at p=a+A and p,=a+0.5A

ka EM2 BT2 PML

A B A B A B
1 4.90E-4| 254 | 5.96E-4| 251 |0.0022 | 307
6.44E-4| 356 | 7.23E-4] 359 | 7.87E-4| 484
10 02824 | 933 10.2814 | 633 [0.2643 | 717

The results show that comparative to ABCs, PML does not perform well for low
frequency ka=1. On the other hand, for high frequency the solution with PML becomes
more accurate for boundary closer to the source. Also the convergence of BiCG for PML
improves in relation to ABCs for ka=10. The position of the artificial boundary affects the
accuracy of ABC solutions more than PML solutions, mainly for ka=1 and ka=S5.

5. Conclusions

In this paper we have presented a comparison of the PML to second order Bayliss-
Turkel and Engquist-Majda conditions in polar coordinates. In order to use ABCs, we
might put the artificial boundary far from the source to improve accuracy. For the problem
shown PML performs better than ABCs when the frequency increases.
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