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Eddy Current Probe Design Using

Finite Element Analysis’

by N. Ida, R. Palanisamy, and W. Lord

Abstract

The use of eddy current probes is widespread in the nuclear
industry, but although significant advances in modeling of
electromagnetic fields and nondestructive testing (NDT) phe-
nomena have been achieved, little attention has been given

to the design and modeling of the probes themselves. This

paper describes the use of the finite element method to the
design of absolute and differential eddy current probes. Com-
parison is made with experimental data obtained with a var-
iable size—variable spacing differential probe. Also studied
is the effect of the coil size on the probe’s ability to distinguish
between closely spaced discontinuities.

INTRODUCTION

The use of eddy current probes is widespread in the nuclear
industry for periodic testing of nuclear power plant steam gen-
erators. Both absolute and differential eddy current probes are
used at a variety of operating frequencies depending on the
materials encountered in each testing situation and the prop-
erties or defects of interest. Although some of these probes are
commercially available, little attention has been given in the
literature to the design and modeling of the probes themselves.

The successful use of the finite element method for analysis
of de and low frequency electromagnetic fields in electrical
machinery'® was soon followed by applications in the NDT
field.** The basic properties of the finite element method (in
particular the ease of handling boundary conditions), ability
to follow awkward shapes, and the relative economy of com-

*This work has been supported by the Electric Power Research In-
stitute under Project RP 1395-2.

0025-5327/83/$2.00/0
©1983, American Society for Nondestructive Testing, Inc.

Nathan Ida was born in Rumania on December
12, 1949. He received his B.Sc. and M.Sc. in elec-
trical engineering from Ben-Gurion University, Beer
Sheva, Israel, in 1977 and 1979, respectively, and
his Ph.D. in electrical engineering from Colorado
State University in 1983. He is currently a re-
search assistant professor with the Department
of Electrical Engineering at Colorado State Uni-
versity, Fort Collins, CO, and is working on nu-
merical modeling of electromagnetic NDT phe-
nomena. Ida is a member of the IEEE Magnetics
Society.

R. Palanisamy received his B.Sc. in physics and his
B.E. and M.Sc. in electrical engineering from the
Universityof Madras, India, and hisM.E.inmechan-
ical engineering from Howard University. He is
currently on leave from the Propulsion Engineering
Division of the Indian Space Research Organiza-
tion, Trivandrum, India, working forhis Ph.D.inelec-
trical engineering at Colorado State University on
the numerical solution of nonlinear, time varying,
electromagnetic field problems.

\\ )
AN

William Lord graduated from Nottingham Univer-
sity, U.K.,withaB.Sc.(Hons.)andPh.D.inelectrica!
engineering. He has taught at the University of
Tennessee, Clarkson College of Technology, and
most recently at Colorado State University, where
he is a professor of electrical engineering. His cur-
rent NDT research interests are in the modeling
of magnetic phenomena for defect characteriza-
tion. For inquiries concerning this work, contact
the author at (303) 491-6018.

Materials Evaluation/41/November 1983 1389



puter facilities make it a particularly attractive method for
modeling of electromagnetic NDT phenomena.

This paper describes the application of a numerical model,
based on an axisymmetric finite element formulation to the
design of absolute and differential eddy current probes. First,
a standard differential eddy current probe is analyzed by vary-
ing the size of the coils and the spacing between them. The
signals calculated are compared with experimental data ob-
tained with a specially built variable coil size/variable spacing
differential probe. Next, the effect of the coil size on the probe’s
ability to distinguish between closely spaced discontinuities is
studied for an absolute eddy current probe. These results show
clearly the importance of the coil size and the coil’s spacing in
relation to the defect size or the spacing between discontinu-
ities. Large coils tend to produce a composite signal, thus mask-
ing the effect of individual discontinuities, while closely spaced
coils (in the case of differential probes) produce signals with
reduced amplitude. Best results are obtained with coils whose
size and spacing are of the same order of magnitude as the
discontinuities themselves.

THE FINITE ELEMENT MODEL

The differential equation governing eddy current phenom-
ena in regions that include conducting and magnetic materials
can be written as
1) l(VxVxA)=ZJ’_\~a%,

u at
where u, A, and ¢ are the magnetic permeability (H/m),
magnetic vector potential (Weber/m), applied current density
vector in the coil (A/m?), and the electrical conductivity (mhos/
m), respectively. In the case of a single frequency (w rad/s),
continuous wave, as is the case in many eddy current testing
situations, Equation 1 reduces to

@ <%>V¥Z=—3s+jwa?i.

Solution to this linear diffusion equation for the sinusoidal
steady-state condition can be obtained in terms of A by solving
Equation 2 with appropriate boundary conditions. From the
values of A, one can obtain any observable electromagnetic
phenomena such as coil impedance changes, energy dissipation,
flux densities, etc. ‘

Many practical eddy current NDT geometries are axisym-
metric as the excitation coils are circular. An absolute or dif-
ferential probe over a conducting plane, a feed-through probe
in a conducting tube, and an encircling probe system around
a conducting rod are some of the geometries satisfactorily ana-
lyzed in a simplified cylindrical coordinate system (r,0,z). In
this system, both J, and 4 have components only in the positive
9 direction. That is, they are functions of r and z only. Hence,
in the case of axisymmetric geometries, Equation 2 reduces to
1/ 8°A | 10A | A A? ~ . =
#( FERE) + FE J,+jwsA.

(3)

The finite element method does not offer a solution to the
diffusion equation directly.”® Instead, the solution is obtained
at discrete points (nodes) in the solution region by formulating
an energy functional equivalent to Equation 3 and minimizing
it with respect to an approximate function space, thus solving
the resulting simultaneous algebraic equations for the unknown
magnetic vector potential values at each point in the region.
The assumptions made in this process are:

(1) The source current density, J,, and the magnetic vector
potential, A, vary sinusoidally with time. In other words, both
can be described as phasors. Harmonics are absent both in the
impressed and induced currents and fields.

(2) Eddy currents within the excitation coils can be neglect-
ed. That is, the ac resistance of an eddy current coil is constant
and equal to its dc resistance.
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(3) Electrical conductivity and magnetic permeability are
single-valued in each element in the solution region. Thus, field
dependency of the permeability is neglected although spatial
variations in u are possible.

(4) The displacement currents as well as any volume or sur-
face charge densities are neglected.

These assumptions are quite mild and fully justified at the
excitation levels and frequencies encountered in NDT appli-
cations; therefore, the resulting numerical model is a powerful
and valuable tool in NDT.

ENERGY FUNCTIONAL AND FINITE
ELEMENT FORMULATION

As pointed out earlier, an energy functional equivalent to
the diffusion equation (Equation 3) is formulated based on the
energy balance in the solution region.

F= (stored energy +dissipated energy

(4) —input energy)dv.

o

Or, in terms of the magnetic field, the magnetic vector poten-
tial, and applied current density, this can be written as*?

2
—J,‘.-A:l dv.

In axisymmetric situations, the magnetic vector potential has
a single component along the 6 axis as is the case for the current
density. Furthermore, because these are constant in the 6 di-
rection, a unit depth is assumed in the formulation. The func-
tional can now be written in terms of A as a surface integral:

® FA)= ff l:ﬁlu{a}i 2 }
R

| 9z
where the first term represents the stored energy in the mag-
netic field, the second represents the dissipated energy through
eddy currents, and the third is the input energy. The solution
now consists of finding a set of functions A such that the en-
ergy-related functional is minimized.

Because this cannot be done everywhere in space, a bounded
region (solution region) is discretized into a large number of
linear triangular elements. In each element, three nodal points
are defined at which the magnetic vector potential is found.
The value of A within each element is assumed to be a linear
combination of the nodal values A,.*

3
n A(r,z)=2iAv (a;,+br+cz)A;,

i=1

A

) FA)= f [leB+-1jwa
m 2

I

0A A

Y Ty

+J—°2£ Z‘L—j‘i]rdr dz,

where A is the area of the element, and A, are the nodal values
of the magnetic vector potential. This approximation is ex-
tended throughout the solution region resulting in N nodal
points and therefore in N unknown values of A.

Minimization of the energy functional is achieved by setting
the partial derivative with respect to each nodal value equal
to zero:

= k= ...,N.
® A, 0 1L2,...,N
The approximation for the magnetic vector potential in Equa-
tion 7 is substituted into the energy functional and the deriv-
atives with respect to the three nodes set to zero. This results
in three equations that in matrix form can be written as

(9) ([S].+jR)] AL.={Q}.

[S] is the 3x3 real part of the elemental matrix consisting of
geometrical quantities of the mesh (r and z values of the ele-



ment vertices, the area of the element, and permeability) and
represents the left hand side of Equation 3. [R] is the 3x3
imaginary part of the matrix and consists of the values of con-
ductivity (o), angular frequency (w), and area of the element
and represents the second term in the right hand side of Equa-
tion 3. {@} is the 3x1 vector of contributions at the nodes of
the element from the impressed current densities (J,), and {A}
is the 3x1 vector of unknown values of the magnetic vector
potential at the nodes of the element.

This elemental system of equations is the basic finite element
representation of the energy functional. Each such elemental
matrix is summed into a global system of equations

(10) (G]{Al={qQ},

where [G] is the NxN banded symmetric complex global ma-
trix, and {@} and {A} are the Nx1 complex source matrix and
the Nx1 complex vector of unknowns, respectively.

The Gauss elimination algorithm is applied to this system
of equations, taking advantage of the symmetry and band-
width, to solve for A at the nodes of the finite element mesh.

From the magnetic vector potential, other quantities can be
calculated such as flux densities and coil impedances.

IMPEDANCE OF EDDY CURRENT COILS

. In NDT applications, the signals from eddy current probes
carry information concerning the environment of the probes,
changes in which cause variations in the probe impedance. The
coil impedance can be calculated directly from the complex
magnetic vector potential.® The impedance of a circular loop
of radius r, carrying a current I, is

jw2wrA,
I

where A; is the value of the magnefic vector potential at r..

Integration of this equation over the cross section of the coil
vields the impedance of the coil. Because the values of A are
not known at the location of each turn in the coil, an average
value is taken as representing the magnetic vector potential in
each element. This value is associated with the centroid of the
element, the radius of the loop being r.. Then, assuming N, to
be a uniform turn density, the impedance of the coil is

1) z=

N
jw2rN,
(12) Zcuil = ! 1 r“/AUAj ’
5 ]=1
or, because NJI,=J,
_ 2w27r<]\ <

(13) Zy=

T D (rA)A,,

where N is the number of elements in the cross section of the
coil.

In situations where differential eddy current probes are used,
two identical coils carrying the same current are present. The
impedance of the probe is found calculating the impedance of
each coil using Equation 13 and summing them to find the
total impedance:

Ny

N,
(14) mehe=!'u)l—:r; [ 2 ("(‘]A.!)14cj_~ E (r‘-/Aj)Aq ] ’
' * J=1 J=1

where Na and Nb are the number of elements in coils a and
b, respectively.

RESULTS

The finite element method described above was applied to
the analysis of a differential eddy current probe as shown in
Fig. 1a. In this situation, both the spacing and the width of
the coils can be varied. The depth of the coils, denoted by ¢

in Fig. 1a, is such as to allow a constant current density in the
coils as the coil width increases (i.e., the cross-sectional area
of each coil remains constant).

The geometry in Fig. 1a is discretized into a number of tri-
angular elements, as shown in Fig. 1b. The finite element meth-
od is now applied to solve for the magnetic vector potential at
each of the nodes of the mesh in Fig. 1b. From these values,
the impedance of the coil is calculated at discrete points (probe
position) ta form a plot called an “impedance plane trajectory.”

In this case, advantage is taken of the fact that symmetry
exists about the z axis and therefore only half of the geometry
is analyzed. Also, because symmetry also exists about the cen-
ter of the defect, the probe is allowed to move up to the point
where it is centered with the defect, and the impedance values
calculated are reflected to form a full impedance plane trajec-
tory.

Figure 2 compares the experimental (Fig. 2a) and finite ele-
ment results (Fig. 2b) from a differential probe with coils 0.08

. in. (2.032 mm) wide at spacings between 0.04 to 0.34 in. (1.016

to 8.636 mm). The defect shown in Fig. 1a is 0.04 in. (1.016
mm) wide and 0.015 in. (0.381 mm) deep, on the outer surface
of a % in. (22.225 mm) Inconel 600 tube.

The experimental results were obtained using a special probe,
as shown in Fig. 3. Figure 3a shows the probe body and spacers
used to vary the spacing. Figure 3b shows the three different
coil sizes used, and Fig. 3c shows an assembled probe with one
of the coil sets. Figure 3d is the experimental arrangement
used, showing a probe, Inconel tube, and the drive unit used
to move the probe.

These results show clearly that, as the spacing of the coils
increases, the resulting impedance plane trajectory loses its
differential nature, and the probe behaves increasingly as two
distinct absolute probes. On the other hand, decreasing the
spacing widens the loops but also reduces the amplitude of the
trajectories.

Figure 4 compares different sized coils at a constant spacing
for the same defect described in the previous paragraph. The
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Figure 1-—Differential eddy current probe inside a tube with
an OD axisymmetric slot: (a) geometry and (b) finite element
mesh (half region).
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Figure 2—Comparison of impedance plane trajectories for
different coil spacing at 100 kHz (coil width is 0.080 in. [2.032
mm})): (a) experimentally recorded and (b) finite element pre-
dictions (for OD axisymmetric slot 0.04 in. [1.016 mm] wide
and 0.015 in. [0.381 mm] deep in an Inconel tube).

mE M

d

Figure 3—Photograph of (a) probe body and spacers, (b) colls,
(¢) assembled probe, and (d) tube, probe, and the drive unit.

spacing is 0.1 in. (2.54 mm), and the coil width varies from 0.02
to 0.3 in. (0.508 to 7.62 mm). In this case, as the coil becomes
wider, the amplitude increases and the shape becomes narrow-
er. From these calculations and experiments, it is clear that a
good compromise is achieved by choosing a probe whose coil
width and spacing is comparable to the width of the defect.

Further finite element predictions were made to illustrate
the potential use of this model as a design tool. Impedance
plane trajectories were calculated and plotted by varying the
following parameters in a given probe.

(1) Frequency: The impedance plane trajectories were cal-
culated at 50, 100, and 150 kHz.

(2) Defect geometry: Two different defects were simulated;
one, a 0.04 in. (1.016 mm) wide and 0.015 in. (0.381 mm) deep
outside diameter (OD) defect, and the second a 0.04 in. (1.016
mm) wide and 0.030 in. (0.762 mm) deep OD defect.
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Figure 4—Comparison of impedance plane trajectories for
different coil sizes at 100 kHz (constant spacing of 0.10 in.
[2.54 mm]): (a) experimentally recorded and (b) finite ele-
ment predictions for the same slot as in Fig. 2.

(3) Coil spacing; the calculations above were performed at
coil spacings of 0.04, 0.10, 0.16, 0.22, 0.28 and 0.34 in. (1.016,
2.54, 4.064, 5.588, 1.991, and 8.636 mm). These calculations are
plotted in Fig. 5. These plots also show the relation in the
amplitude for smaller and larger defects and the importance
of choosing the correct spacing for the probe coil if meaningful
signals are to be obtained.

As a second example of the application of the finite element
method to probe modeling, the geometry in Fig. 6 was studied.
It is a section of a steam generator’s Incoloy 800 tube inside
the tube sheet region. The steam generator (German design)
has rolled tubes where the rolling region can be at varying
distances from the tube sheet inner surface (1 in Fig. 6). The
absolute coil, 1 mm thick, has a length of | mm, which needs
to be optimized for the particular application. In addition, the
signal from the rolling region is to be modeled for identification
of the tube condition.

To determine the probe length needed to obtain the best
signal for different locations of the rolling region relative to
the tube sheet surface, three coil lengths (a=1, 3, and 9 mm)
were modeled each for three distances (1=1, 3, and 9 mm). The
finite element results for these nine situations are plotted in
Fig. 7.

It is clear from this figure that the longer the coil in com-
parison with the distance between the two factors that cause
the change in the signal (tube sheet and rolling region), the
less distinct are the two phenomena in the signal. Thus, a coil,
9 mm long, testing for the rolling region, which is only 1 mm
away from the tube sheet surface, produces a flat composite
signal in which the rolling and the tube sheet cannot be dis-
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Figure 5—Finite element predicted impedance plane trajec-
tories for different defects, frequencies, and coil spacings. (Small
signals are for an OD axisymmetric slot 0.04 in. [1.016 mm]
wide and 0.015 in. [0.381 mm] deep. The larger signals are
for a similar slot 0.04 in. [1.016 mm] wide and 0.03 in. [0.762
mm] deep.)

tinguished, as in Fig. 7g. The other extreme is when the coil
is much smaller than the distance, as in Fig. 7c. Here the two
signals are simply superimposed, as one signal does not affect
the other.

The curves in Fig. 4 are generated at 100 kHz and are, in
general, a composite signal. The lower, comma-shaped part of
the curve is due to the effect of the tube sheet and the upper,
“s” shaped part is due to the rolling region. These curves com-
pare very well with experimental results, such as the curve in
Fig. 8, taken at 100 kHz. The choice of coil shape might be
complicated by additional factors, such as the minimum num-
ber of required turns, but as can be seen from these results,
the coil should be of the same general length as the effect it
is measuring. Because the average distance of the rolling region
is about 3 mm, a coil length of 3 mm would be a good choice.

CONCLUSIONS

The finite element method, originally developed for studying
electromagnetic fields in electrical machinery, can be used with
significant advantages to observe eddy current NDT phenom-
ena. In particular, the numerical modeling of probes for the
purpose of probe optimization in testing situations is of sig-
nificant importance for the nuclear industry where heavy re-
liance on eddy current probes is encountered. In some in-
stances, the numerical process is the only feasible way to analyze
the testing situation, such as in the case of subsurface defects.
This paper describes the application of the numerical model
under simple axisymmetric conditions. For the more general,
arbitrarily shaped defect geometries in steam -generators or
other nonaxisymmetric situations, a more complex three-di-
mensional model is required. It is, however, clear from this work
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Figure 6—Geometry of steam generator section showing the
tube sheet, tube, and coil. Dimensions are in millimeters.
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Figure 7—Impedance plane trajectories of different coils (1,
3, and 9 mm long) and different spacings between tube sheet
and rolling (1, 3, and 9 mm).
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Figure 8—Experimental impedance plane trajectory from a.

3 mm long coil at nominal spacing of the tube sheet and rolling
at 100 kHz.

that significant improvements can be made in the design of
eddy current probes with regard to testing situations using
available numerical models.
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