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Application of Surface Impedance Concept to Inverse
Problems of Reconstructing Transient Currents
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Abstract—The inverse eddy-current problem of fast transients is
solved by a new boundary element formulation employing time do-
main surface impedance boundary conditions. The integral equa-
tion is transformed to invariant form and is solved only once for
a given geometry of the problem. Numerical results are in good
agreement with measured data.

Index Terms—Boundary element calculations, eddy currents,
magnetic sensors, time dependent magnetic fields.

I. INTRODUCTION

I N MANY practical problems, such as protection of power
systems, measurement of transient currents flowing in

massive parallel conductors is required. Traditional low cost
current sensors demonstrate poor performance when applied
to fast transients. Recently, innovative low cost ac current
sensors have been proposed, based on magnetic sensor arrays
and digital signal processing techniques [1]. The present paper
describes a new algorithm to extend the applicability of those
novel sensors to measurement of transients. The proposed
technique can be applied when the duration of the current
transient is so short that the electromagnetic field has no time
to penetrate deep into conductor and remains concentrated
near its surface. A natural way in this case is to eliminate the
conducting region from the numerical procedure by using the
time-domain surface impedance boundary condition (SIBC)
at the conductor/dielectric interface. Thus, only the surface of
the conductors has to be discretized and the boundary element
method (BEM) can be used.

However, direct implementation of time-domain SIBC for the
BEM leads to one general shortcoming, namely: the integral
equations contain the time convolution product and have to be
solved at every time step. This disadvantage, making the method
computationally expensive, may be overcome if the total cur-
rents flowing in the conductors are correlated in time. Recently,
so-called invariant BEM-SIBC formulations allowing for sep-
aration of variables into spatial and time components for any
time-dependence of the current passage have been developed for
conductors of linear materials [2]. The integral equations in the
invariant form have to be solved only once for a given system
of conductors and then the results for any source field can be
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easily obtained. In this paper, the invariant formulation is devel-
oped for inverse problems of reconstructing transient currents.

II. STATEMENT OF THE PROBLEM

Consider a system of parallel conductors of arbitrary cross
sections in which transient currents , flow
from an external source. Direct theaxis of the global Cartesian
system along the conductors so that the problem can be treated
as two dimensional in the plane. Parameters of the conductor
material and surrounding dielectric space are assumed to be con-
stant. Let magnetic sensors be located at the positions ,

in the dielectric space separating conductors.
A magnetic sensor gives an output voltage signal equal to

(1)

where is the sensor sensitivity and is the unit vector indi-
cating the sensitivity direction of the sensor. Let the signals be
correlated in time so that the following decomposition can be
done:

(2)

where , are constant coefficients and
is a time-dependent function.

Let the time variation of the incident field be such that the
penetration depth into the body remains small as compared
with the characteristic size of the conductor cross section

(3)

where is the duration of the incident current pulse andand
are electric conductivity and magnetic permeability of the con-
ductor’s material, respectively.

In the inverse problem the output voltage at the location of
the sensors is known (measured) and the goal is to calculate the
total currents in the conductors.

III. SCALAR POTENTIAL FORMALISM

We use the following decomposition of the magnetic field in
free space to introduce the magnetic scalar potential:

(4)

(5)

Here, is the magnetic field created by the current
flowing through an assumed filament located at the position
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inside the conductor [3]. The field is obtained from the
Biot–Savart law

(6)

where is a unit vector directed along theaxis. Substitution
of (4), (5), and (6) into (1) yields

(7)

(8)

Since the scalar potential in free space obeys the Laplace equa-
tion, the boundary integral equation method yields the following
surface integral equation:

(9)

where is the contour of the cross section of the conductor
, is the fundamental solution of the two-dimensional (2-D)

Laplace equation in free space, and the unit normal vectoris
chosen inwards. Taking into account (4), (9) can be rewritten in
the form

(10)

Equation (10) should be supplemented by another relation
between the functions and . The Leontovich surface
impedance boundary condition can be used in this role [2]

(11)

The asterisk denotes a time-convolution product and the oper-
ator of surface divergence is defined as follows:

(12)

Substituting (4) into (11) and (12), we obtain

(13)

Substituting (13) into (10) makes the integral equation formu-
lation solvable with respect to using the following iteration
procedure.

Let be the total currents at the step. Then, are
obtained in the following way:

1) calculate using (5)–(6);
2) solve (10) and (13) to obtain ;
3) calculate , , in the vicinity of the

sensor by moving the observation point in (10);

4) calculate at the location of each sensor;
5) calculate using (7).
When the number of sensors is higher than the number of

conductors, Step 5 is performed using the “least squares” algo-
rithm, and a reduction of uncertainty in current reconstruction
is obtained.

The procedure described has to be performed at every time
step. This disadvantage may be avoided representing the for-
mulation in invariant form [2].

IV. I NTEGRAL EQUATION FORMULATION IN INVARIANT FORM

A. Nondimensional Variables

Let us switch to the local orthogonal Cartesian coordinate
system ( ) defined as

(14)

where , , are the unit basis vectors. The characteristic
lengths associated with the variables, , and are and ,
respectively. We introduce the basic scale factors, , and

(nominal sensitivity of the sensors) for the current, surface
coordinates , , time and sensor sensitivity, respectively. The
scale factors for other values can be expressed in terms of the
basic scale factors [2]

(15)
Here, is a small parameter proportional to the ratio of the skin
depth and characteristic size of the conductor cross section.

With nondimensional variables the small parameterappears
in the SIBC (13)

(16)

The sign ” ” denotes nondimensional variables.
With the dimensionless variables, (6), (7), and (10) take the

form of

(17)

(18)

(19)

Here, .
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B. Expansions in the Small Parameter

We represent the unknown functions, i.e.,and , in the form
of the power series in the small parameter

(20)

Substituting the expansions (20) into the formulation (17)–(19)
and equating the coefficients of equal powers of, the integral
equations for the first and second coefficients of expansions are
obtained

(21a)

(21b)

(21c)

(22a)

(22b)

(22c)

C. Separation of Variables

We introduce nondimensional time-dependent function

(23)

We represent , , , , and in the form

(24)

(25)

(26)

Then the following transformation can be done:

(27)

Fig. 1. Experimental setup. Sensors are in positionsx = �0:073 m, x =

�0:025 m, x = 0:023 m, x = 0:073 m; y = 0:054 m, y = 0:054 m,
y = 0:054 m, y = 0:055 m.

Substituting (23)–(27) into (21) and (22) and taking into account
(3) and (19), we obtain the formulations for the spatial functions,
as shown in

(28a)

(28b)

(28c)

(29a)

(29b)

(29c)

The problems in (28) and (29) can be solved using the iteration
procedure described in Section III. Finally, returning to dimen-
sional variables we obtain

(30)

Formulations enforcing SIBCs of higher orders of approxi-
mation can be developed in the same way. Limits of applica-
bility of the approach are discussed in [4].

V. NUMERICAL AND EXPERIMENTAL RESULTS

The numerical results obtained using (28)–(30) are compared
with data measured by the experimental setup shown in Fig. 1; a
pair of identical parallel aluminum conductors of circular cross
section are connected in series by a wire and the circuit is fed
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Fig. 2. Transient current waveform.

Fig. 3. Relative difference between measured and FEM calculated magnetic
fields.

by a dc battery so that currents are opposite directed (
). The transient is obtained closing a switch so that the

current waveform is exponential, as shown in Fig. 2. Reference
current measurement is performed by a commercial close loop
Hall effect current transducer whose standard uncertainty is esti-
mated 0.4 A. Four magnetoresistive sensors (Philips KMZ10A)
of nominal sensitivity (mV/V)/(kA/m) are placed as
depicted in Fig. 1. Among the main sources of uncertainty in
magnetic field measurements one has to consider dc offset both
in measurement and in sensors calibration, disturbances due
to external magnetic fields and geometrical positions of sen-
sors. Since quantification of the overall measurement uncer-
tainty would be complex and out of the scope of the present
paper, the experimental measurements are validated by compar-
ison with a commercial FEM software and relative difference
between measured and calculated fields are reported in Fig. 3 at
some instants of time.

Fig. 4 shows the relative difference between measured and
reconstructed current. The computations are performed in the
PEC limit and using the Leontovich SIBC. Note that both for-
mulations are divergent from the actual solution when the steady
state is reached and they lose their vailidity.

Two and four sensors have been employed and, as it could be
expected, the use of larger number of sensors improves the accu-
racy in reconstruction. Errors in the Leontovich approximation
are of the same order of magnitude of those expected in mag-
netic field measurements. The technique is then proved to fulfill
specifications of current transducers for protection applications,

Fig. 4. Relative error of current reconstruction when: (a) two sensors (no. 1
and no. 4) were used and (b) all four sensors were used.

Fig. 5. Spatial components~I and ~I versus number of iterations: (a) two
sensors (no. 1 and no. 4) were used and (b) all four sensors were used.

preserving the low cost of the measurement system thanks to the
very common magnetic sensors employed. Fig. 5 demonstrates
the convergence properties of the proposed iteration procedure.

VI. CONCLUSION

The inverse problem of calculation of the transient currents
flowing in the conductors using measured voltages as input is
considered. The boundary integral equation formulation em-
ploying time-domain surface impedance boundary condition is
developed and solved by the iteration procedure. The formula-
tion is transformed to the invariant form admitting separation
of variables in space and time components. Thus, the integral
equations for a given system of conductors have to be solved
only once for any time dependence of the current passage. Nu-
merical results are in good agreement with experimental data.
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