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Transmission Line Matrix Model for Detection
of Local Changes in Permeability

Using a Microwave Technique
Razvan Ciocan, Member, IEEE, and Nathan Ida, Member, IEEE

Abstract—A three-dimensional transmission-line matrix model
was developed to simulate the microwave detection of local changes
in permeability. The technique can be used to map local nonunifor-
mities in magnetization. Numerical modeling was carried out for
frequencies that are commonly used in microwave nondestructive
testing (0.8–1 GHz). A comparison between experimental and nu-
merically generated curves is provided. This comparison validated
the proposed numerical model.

Index Terms—Microwaves, nondestructive testing and evalua-
tion, transmission-line matrix (TLM) method.

I. INTRODUCTION

THE FIRST microwave probe capable of measuring the
spatial variation of magnetic properties was proposed in

1962 [1]. The possibility to perform microwave measurements
on thin ferromagnetic layers in a magnetic field was demon-
strated recently [2], [3]. A fully theoretical model for these
techniques in various geometries is almost impossible to obtain.
For this reason, a numerical model that is unconditionally stable
and capable of modeling different geometries is very attractive
and very useful for future development of these investigation
techniques.

The transmission-line matrix (TLM) is a timte-domain nu-
merical technique that is well suited for modeling of complex
geometries [4]. The method is a direct numerical implementa-
tion of the Huygens principle. The wave front at each iteration
for a certain mesh node is a result of the waveforms generated at
neighboring nodes in the previous iteration. The TLM is a phys-
ical discretization approach and does not require the solution of
the differential equation in the whole space being modeled. The
solution of the differential equation is implemented only for the
smallest entity (called node) that can be modeled using TLM
method in the scattering matrix formulation. The coefficients
of this matrix are obtained in such a way that charge and flux
conservation laws are obeyed for the node. This method is rec-
ognized for its unconditional convergence that is achieved for
dimensions of nodes less than one tenth of a wavelength [5]. Nu-
merical results were obtained using the symmetrical condensed
node (SCN) [6]. A new numerical model based on the TLM
method for microwave detection of local variation in perme-
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Fig. 1. Symmetrical condensed node for a parallelepipedic region of space
with dimensions u, v, and w.

ability is proposed in this paper. Section II presents an algorithm
description. Section III contains a discussion of the obtained re-
sults, and Section IV presents the conclusion of this work.

II. ALGORITHM DESCRIPTION

A. TLM and Finite-Difference Timte-Domain Formulations

The TLM equations for the field components are written as
a function of the voltages on the node edges. The three-index
notation used in this paper (Fig. 1) is related to the position of the
ports and to the direction of link lines [7]. For example, is
the voltage pulse on a link line parallel to the axis (“ ” index),
on the positive side (“ ” index), and polarized in the direction
(“ ” index).

A full derivation of field quantities obtained in an FDTD for-
mulation is given in [8]. The field derivation is based on the ra-
tionale of Jin and Vahlidieeck, but here it was developed in the
three-index notation [9].

Following this derivation, it is shown that the field quantities
in the middle of the cubic node (with a side of ) are written
as a function of incident voltages on node faces

(1)

(2)

(3)

(4)
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(5)

(6)

To reveal the differences between the TLM algorithm based
on symmetrical node and the three-dimensional finite-differ-
ence timte-domain (FDTD) Yee’s scheme we start with the
source-free Maxwell’s equations for an isotropic medium in
rectangular coordinates [10]

(7)

(8)

Equations (7) and (8) are written using Yee’s scheme with cen-
tral difference approximations as [10]

(9)

(10)

Equations (9) and (10) were written for a point (Fig. 1) located
at ( , , ) at instant . The stability factor was introduced in
(9) and (10) and is defined as

(11)

For a cubic node, in free space, the stability factor is found to
be [10]

(12)

A similar value was determined from dispersion relation anal-
ysis [11]. This condition is automatically satisfied in TLM (SCN
node) because the speed of propagation in a TLM based on the
SCN node is [12]

(13)

The main advantage of TLM (SCN node) over FDTD (Yee’s
scheme) consists in modeling discontinuities and sources. Field
components for TLM are computed at the same location in time

and in space while in FDTD—at alternate time steps and at
half space increments. The left index of the fields in (9) and
(10) specifies the time when the quantity is evaluated. In Yee’s
scheme the electric and magnetic field components are com-
puted at alternate time steps and at half space increments. This
is in contrast with the TLM algorithm based on the SCN, where
all field components are computed at the same location in time
and space, as shown in (1)–(6). This is the main difference be-
tween an FDTD and a TLM scheme based on the SCN node. The
immediate benefit of having all field components at the same
point consists in modeling space discontinuities. Furthermore,
the stability criterion required by (12) for the FDTD scheme is
automatically satisfied by any TLM scheme.

Comparison between TLM and FDTD in reported results ob-
tained on the same structure and using the same mesh size shows
a better accuracy for the TLM scheme [13], [14]. The price for
this consists in increased computer memory resources as com-
pared with FDTD: a TLM algorithm based on the SCN node
needs 24 additions, 12 multiplications, and 12 variables to be
stored per node [15]. The FDTD algorithm requires 24 addi-
tions, 12 multiplications, and 6 variables to be stored per node
[16].

B. TLM Algorithm Implementation

The main steps of a TLM algorithm are initialization, scat-
tering and connection. An additional step, called scanning, was
added to these components. This step involves changing the po-
sition of excitation according to the experimental scanning pat-
tern whereby the TLM algorithm is repeated for each new posi-
tion. The time response for each position is saved in an output
file for further processing. In the initialization step, a Gaussian
modulated pulse is injected in the TLM mesh in the position of
the microwave probe. The voltage injected is given by

(14)

In (14), the following notations were used: amplitude;
standard deviation; time; delay; frequency;
phase. The pulse parameters have been modified to obtain the
best fit with a reflected signal from a material with known per-
meability. In further experiments these parameters were kept the
same. The scattering matrix was implemented according to the
methodology proposed by Trenkic [17]. This method is based on
an algorithm that explores the symmetry of the scattering matrix
and decreases the number of operations needed. The voltages at
all ports are obtained using the following equations:

(15)

(16)

In (15) and (16), the following notations were used:

(17)

(18)

The voltages are obtained considering all circular permutations
of indexes ( , , ) denoted in general form as ( , , ). The
parameter used to obtain the microwave image is the scattering
parameter, S . This parameter cannot be obtained directly from
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Fig. 2. Block diagram of the experimental setup. 1: computer; 2: network
analyzer; 3: stepper motor controller; 4: port-probe assembly; 5: microwave
probe; 6: sample; 7: electromagnet; 8: voltage source.

the TLM algorithm because the incident field cannot be sepa-
rated. To solve this problem, two successive runs of the program
are needed. The first run is performed with excitation without a
reflecting object. This run will provide data for the reference
port. A second run of the program will be performed consid-
ering boundary conditions for objects to be investigated. The
S parameter is given by [18]

(19)

In (19), and are the frequency responses obtained for the
same position of the excitation source without reflecting object
and with reflector respectively.

III. RESULTS

An experimental setup (Fig. 2) was designed for this applica-
tion [19]. In this setup, the magnetic sample (six in Fig. 2) was
placed over an electromagnet (seven in Fig. 2) that was ener-
gized by a dc current from voltage source (eight in Fig. 2). The
sample and the electromagnet assembly were located under-
neath the microwave probe (five in Fig. 2). The personal com-
puter (1 in Fig. 2) controlled the movement of the microwave
probe via a stepper motor controller (three in Fig. 2). The net-
work analyzer (two in Fig. 2) and voltage source were controlled
by computer via GPIB interface. The electromagnet used in the
present work produced 250 G at 100 mA (16 V) and its versus

characteristics were approximately linear in that range as de-
termined with a Gauss meter.

The microwave probe was operated in reflection mode [20].
The probe position over the sample could be changed using var-
ious micrometers and stepping motors.

Fig. 3. Comparison between numerical (dashed line) and experimental
frequency responses obtained in the absence of an external magnetic field.

Fig. 4. Frequency responses obtained in absence and in presence of magnetic
field.

TABLE I
COMPARISON BETWEEN NUMERICAL AND EXPERIMENTAL DATA

Fig. 3 shows a comparison between numerical and experi-
mental resonance curves obtained for a CO-NETIC alloy sample
in the absence of the external magnetic field. The values for
relative permeability were obtained from product catalog (CO-
NETIC & NETIC, Magnetic Shielding Alloys Obtained From
Magnetic Shield Corp.). The graph shows good agreement be-
tween experimental and numerical data.

To obtain a similar resolution in frequency domain for exper-
imentally and numerically generated curves f kHz
a zero padding procedure was applied to numerical data. The
microwave probe detects the relative change in magnetic per-
meability by changing its frequency response as it is shown in
Fig. 4. This change was 190 kHz and 1 dB for numerical data.
Similar values were obtained for experimental data (Table I).

In order to prove that the system can detect a nonuniformity
in magnetization, the values of the S parameter obtained at
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Fig. 5. Numerical and experimental profiles obtained at scanning over a 2-mm
sample.

889.61 kHz, when the microwave probe was scanned over a
2-mm sample, were plotted in Fig. 5.

IV. CONCLUSION

A numerical model for scanning microwave microscopy was
implemented for magnetic materials. The model is based on
the TLM algorithm. The experimental results obtained by the
authors validate the proposed numerical model. The scanning
process was also implemented into the numerical model. This
allows a better characterization of discontinuities in magnetic
permeability detected using microwave techniques.
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