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The effects of velocity on moving sources are encountered in many practical eddy current
applications. In many instances these effects are ignored either because velocities are relatively
low, because of our inability to quantify these effects, or for purposes of simplifying the
solution. There are, however, a number of important applications in which this cannot be done
and full account of velocity must be taken. Some obvious applications are magnetic recording,
magnetic braking, and nondestructive testing. This work presents a finite element formulation

for eddy current problems that takes into account the relative movement of sources. Results
are presented indicating that velocity effects are significant at high velocities, and are
important for correct signal interpretation. The effect of velocity on nondestructive testing
signals is investigated and shown to display significant deviation from static behavior. Because
of the form of the governing equations, spurious, nonphysical solutions may be generated.
These are eliminated by two separate methods. One involves refinement of the finite element

mesh and the second, upwinding of the finite elements.

INTRODUCTION

A number of eddy current applications involve relative
movement of sources or of some other material in the vicini-
ty of the sources. In such problems, an additional current
due to the movement is generated. An area of particular
concern in this respect is that of nondestructive testing. The
interaction between the moving probe’s field and material
discontinuities constitute the signals that one is interested in.
Reference will be made in this work to specific nondestruc-
tive test (NDT) applications. The results and the governing
equations, however, are completely general. The effect of
movement is customarily neglected in eddy current testing,
in the interpretation of eddy current signals, and indeed, in
modeling of general eddy current problems. This approach
is based on the fact that the effects due to velocity are negligi-
ble in many practical situations, especially at low velocities.
There are, however, a number of very important testing
problems where failure to correctly account for the currents
induced through motion may introduce significant errors in
the test signal.

The work presented here describes a finite element for-
mulation in axisymmetric geometries that includes velocity
effects. The formulation is based on quadrilateral elements
and takes into account velocity by including in the field
equation, an induced current density due to relative move-
ment. Because of the convective term in the field equation,
the solution may, under certain conditions contain nonphy-
sical oscillations, leading to loss of accuracy.'™ This aspect
is well known in flow problems and is related to the Reynolds
number.' A similar approach is taken here, where the exis-
tence of oscillations in the solution is related to the magnetic
Reynolds number” of the media involved. These oscillations
are eliminated either by refinement of the finite element
mesh or by upwinding the finite elements.

FIELD EQUATIONS

The axisymmetric eddy current field equation to be
solved is
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where v = 1/u, A is the magnetic vector potential, J; is the
applied current density, and v is the velocity of the source. A
similar equation applies to other 2D geometries. The equa-
tion is written in its linear form. This is appropriate for a
variety of eddy current problems especially at low excitation
levels. It is certainly the case in most practical eddy current
testing applications.

In the general 3D case, one would have to allow for
movement in all three directions. In two dimensions, it is
possible to have movement in an arbitrary direction in a
plane. More often, however, the movement is in a specified
direction and, by properly choosing the coordinate system,
only one velocity component need be considered. In axisym-
metric geometries the movement can only be considered
along the axis of the geometry (z direction) as in Eq. (1).

FINITE ELEMENT APPROXIMATION

For inclusion of velocity effects in eddy current prob-
lems, the appropriate form is the Galerkin (or weak) formu-
lation®~7 of Eq. (1). With standard shape functions, N,, for a
finite element (quadrilateral, in this case), the weak form
can be written as
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This is now integrated by parts and the finite element ap-
proximation for the magnetic vector potential is substituted.
Surface integration is eliminated by assuming zero vector
potential on the boundaries. With these conditions, the ele-
mental contribution to the global matrix is

[[K]1+[S]+jIR]1H{4} ={Q}. (3)
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The elemental matrices [K], [R] and the vector {Q}
are identical to those obtained in any axisymmetric finite
element formulation. The matrix [S] is due to the velocity
term alone and unlike [K] and [R], is nonsymmetric.

The global matrix assembled by summation of the indi-
vidual elemental contributions is therefore asymmetric be-
cause of the introduction of the velocity term.

MESH REFINEMENT AND UPWINDING

The inclusion of the convection term in Eq. (1) is
known to generate oscillatory results that are due to the ratio
between the magnitude of the first and second derivative
terms. Thus, the larger the velocity, the larger this ratio and
the more severe the loss of accuracy due to this effect. For
convenience, and in order to quantify this aspect, the condi-
tion for a stable solution is related to the so-called magnetic
Reynolds number. This is defined as the product of velocity,
permeability, conductivity and a characteristic length* L,

R, =poul, (4)
where the characteristic length is taken as the length of the

element in the direction of the motion. Using this notation, a
condition for a stable solution is obtained as®

L<2/uov. (5)

For low velocity applications, particularly with low perme-
ability materials, this condition is easily satisfied. For high
velocity, high permeability materials, there are two ap-
proaches that can be taken. One uses a mesh refining scheme
that guarantees that the relation in Eq. (5) is satisfied in
conducting media. This is a simple approach that works very
well at relatively low velocities. At high velocities, the refine-
ment necessary may be excessive and may require an unusu-
ally large mesh with the associated expense in computer re-
sources. A second approach is to use upwinding of the
elements. Although many methods for upwinding finite ele-
ments are available,’* the method used here is that of
Hughes® and relies on modification of the shape functions
for the convective term, This is done by evaluating the shape
functions at an adjustable point within the element. The lo-
cation of this point within the element determines the degree

of biasing with limiting cases that are equivalent to forward
or backward finite difference schemes.?

RESULTS

In order to investigate the effects velocities have on
NDT measurements, a geometry consisting of a simple cir-
cular coil with square cross section, 0.5 in. wide inside a tube,
6 in. in diameter, and 0.25 in. wall thickness was used. The
tube is either magnetic or nonmagnetic. The quantity of in-
terest in NDT is the impedance of the coil. Variations in the
impedance indicate changes in permeability and conductiv-
ity due to anomalies in the material being tested. The effects
of velocities on the impedance of the probe are important
because movement of the probe changes the impedance of
the coil and, if not taken into account, may be interpreted as
an anomaly. For correct interpretation of results and com-
parison of numerical calculations and experimental data, the
correct computation of the impedance, including velocity
effects, is vital.

To evaluate the formulation presented here, the imped-
ance of a coil at various frequencies and velocities in magnet-
ic and nonmagnetic tubes was calculated. Table I summar-
izes these results as variations from the impedance at rest.
The variations are given for the real (R) and imaginary (X)
parts of the impedance separately. All results were comput-
ed without upwinding or mesh refinement, then through
mesh refinement, and then by upwinding. The results given
in brackets are only those that varied by more than 1% from
the results without either upwinding or mesh refinement. In
most cases, the difference between the calculation with up-
winding and mesh refinement is less than 0.5%. Where the
variations are larger, it is because the element size was not
small enough. It is clear that the variations in impedance are
quite large and ignoring the coil velocity will result in large
errors. At the same time, for nonmagnetic materials, at prac-
tical testing velocities, these effects can be neglected. In most
practical cases, the variations between the computation with
upwinding or mesh refinement and that without is not large.
Upwinding or mesh refinement becomes necessary only at
very high velocities. Part of the reason for this is that the

TABLE 1. Comparison of coil impedances at various velocities and frequencies for magnetic and nonmagnetic materials. Conductivity is 1.0E 4 06 for the

nonmagnetic and magnetic materials.

Velocity 40 Hz (p, = 1000) 2 kHz (e, = 1000)
(m/s) X R X R
10 3.6% 49.0% (52.1) 13.2% 15.0% (16.0)
50 16.0% (17.1) 60.0% (63.2) 17.8% (19.4) 21.0% (22.9)
100 22.1% (23.7) 69.6% (72.1) 26.2% (27.8) 25.8% (27.3)
1000 19.6% (21.1) 94.3% (95.8) 41,19 (43.2) 67.0% (69.4)
Velocity 2 kHz (e, =1) 20 kHz (e, =1)
(m/s) X R X R
10 0.9% 1.9% 0.07% 2.0%
50 4.6% 8.5% 04 % 11.7%
100 9.2% 14.0% 0.8 % 24.2%
1000 38.4% (39.7) 48.4% (51.0) 22.1 % (23.3) 48.6% (49.9)
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FIG. 1. Flux distribution for a moving coil at 40 Hz. (a) v =0 m/s, (b)
v=10m/s.

mesh used in eddy current computations is usually relatively
fine in order to take the skin depth into consideration.

In addition to calculation of impedance, the field distri-
bution in space was calculated to see any oscillatory effects
that may occur. Figure 1 shows the flux distribution for a
coil at 40 Hz at zero velocity and at 10 m/s. None of them
displays any noticeable numerical anomaly. (The flux lines
plotted are only the outer, weak lines.) To demonstrate how
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FIG. 2. Flux distribution for a coil at 40 Hz, at 100 m/s without upwinding.
The nonphysical behavior is due to the large convection term.

severe the oscillations can be, the field of the same coil at a
velocity of 100 m/s was also calculated. This is shown in Fig.
2. Tt shows spurious flux lines that do not seem physically
possible.

CONCLUSIONS

The formulation presented here represents a simple way
of taking into account velocity effects in finite element mod-
eling of electromagnetic fields. In particular, the importance
of such a model for eddy current nondestructive testing ap-
plications was demonstrated. Velocity effects are relatively
small for most applications but may be quite significant in
NDT where testing velocities are relatively high. Their cor-
rect computation is important for correct interpretation of
results, especially with magnetic materials.
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