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SUMMARY

Input data to a numerical model are not necessarily well known. Uncertainties may exist both in material
properties and in the geometry of the device. They can be due, for instance, to ageing or imperfections
in the manufacturing process. Input data can be modelled as random variables leading to a stochastic
model. In electromagnetism, this leads to solution of a stochastic partial differential equation system.
The solution can be approximated by a linear combination of basis functions rising from the tensorial
product of the basis functions used to discretize the space (nodal shape function for example) and basis
functions used to discretize the random dimension (a polynomial chaos expansion for example). Some
methods (SSFEM, collocation) have been proposed in the literature to calculate such approximation. The
issue is then how to compare the different approaches in an objective way. One solution is to use an
appropriate a posteriori numerical error estimator. In this paper, we present an error estimator based on
the constitutive relation error in electrokinetics, which allows the calculation of the distance between an
average solution and the unknown exact solution. The method of calculation of the error is detailed in
this paper from two solutions that satisfy the two equilibrium equations. In an example, we compare two
different approximations (Legendre and Hermite polynomial chaos expansions) for the random dimension
using the proposed error estimator. In addition, we show how to choose the appropriate order for the
polynomial chaos expansion for the proposed error estimator. Copyright q 2009 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Applying the finite element method (FEM) to solve the Maxwell equations leads to valuable tools
for understanding and predicting the features of electromagnetic devices. Currently, the input data
to these tools (geometry of the device and material properties) are generally assumed to be known
exactly. In some applications however, the input data are not known exactly and therefore, the

∗Correspondence to: S. Clénet, L2EP/ENSAM, 8 bd Louis XIV, 59046 Lille Cedex, France.
†E-mail: stephane.clenet@lille.ensam.fr

Copyright q 2009 John Wiley & Sons, Ltd.



1418 S. CLÉNET AND N. IDA

random aspects of these data can be taken into account. In fact, mechanical parts are manufactured
with dimensional tolerances, whereas some dimensions, such as air gaps in electric machines, are
critical as they strongly influence the performance. Moreover, uncertainties in material composition,
the characteristic changes with environmental factors (humidity, pressure, etc.) and thermal and
mechanical inputs, which modify the electromagnetic behavior of the material with time, are
often unknown. The material features might thus be considered as stochastic data. In addition,
as the accuracy of the models used to describe the material behavior increases, the problem of
repeatability for different samples of the same material becomes apparent. In practice, if material
properties are non-repetitive, the normal process of increasing the precision of the deterministic
model becomes futile. Consequently, stochastic models (having stochastic inputs and outputs) are
better suited in taking into account the uncertainties in model dimensions and material properties.

During the last decade or so, significant effort has been invested in solving partial differential
equations that govern many physical processes that take into account random behavior laws and
external inputs (such as forces on boundaries). In the available literature, two classes of methods
have been proposed to solve such a system of equations [1, 2]. The ‘non-intrusive’ methods are
embedded deterministic numerical models in an environment of stochastic procedures. Among the
available techniques, the Monte Carlo Simulation Method is probably the best known and widely
used in different scientific areas (financial mathematics, biostatistics, mechanics, etc.) [3]. The
Monte Carlo method is robust and simple but very time consuming especially when coupled with
a finite element model. Other methods have been proposed in order to reduce the computation
cost, for example, Stochastic Surface Response Method and Collocation Methods.

The second class of methods is the so-called ‘intrusive’ methods that require specific
developments to solve the stochastic problem. The mean-centered perturbation method consists
of expanding the unknown field around its mean. This approach is very useful in determining the
first- and second-order statistical moments (mean and variance) of the unknown field. However,
the extension to moments of higher orders is very difficult and time consuming. In addition,
it is not very accurate for problems with input data with large deviations. At the beginning of
the 1990s, Ghanem and Spanos proposed the so-called Spectral Stochastic FEM that consists of
discretizing the unknowns in the spatial and stochastic domains simultaneously [4]. Other schemes
of discretization have followed [5, 6].

Spectral stochastic finite element models have been applied in various domains of physics
including mechanics [7], fluid dynamics [8] and electromagnetics [9–11]. A large variety of
methods exists and for a given method one can employ many different approaches. For example,
the stochastic polynomial decomposition used to approximate the ‘random dimension’ is often
used either for non-intrusive or intrusive methods. Different types of polynomial expansions are
available. Comparisons between these expansions have been done on academic examples but not on
more realistic devices. These comparisons need to be done to obtain the most suitable expansions
for the best compromise of accuracy versus computation time. In that case, the analytical solution
is not available; hence, the error due to discretization must be estimated. A priori error estimations
have been proposed to compare different approximation schemes [2]. In [12], an a posteriori error
estimator based on the evaluation of the constitutive relation error has been proposed for stochastic
problems in mechanics. It is in fact an extension of an error estimator based on the Prager–Synge
theorem [13]. The main feature in this estimator is that it estimates a distance from the exact
solution of the problem without knowing the exact solution.

In this paper, we develop an a posteriori error estimator based on the constitutive relation
error in static electromagnetism. The calculation of the error estimation requires two fields that
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satisfy the equilibrium equations. These fields are obtained by solving two complementary potential
formulations. After a short introduction on notations in Section 2, we present the deterministic
problem and then discuss the error estimation procedure in Section 3. We also present the solution
of two complementary potential formulations to obtain the admissible required solutions for the
error estimation. Section 4 presents the stochastic problem and the proposed estimator and its
properties in the stochastic case. Then, we detail the calculation of the error when the approximated
fields are given under the form of an expansion of orthogonal polynomials. Finally, in Section 5,
the estimated error is used to compare two polynomial approximations based on the Hermite and
Legendre polynomials.

2. NOTATIONS

In the following we consider a contractible domain D in R3 with a boundary S. Let the standard
inner scalar product defined on D be: (X,Y)D =∫DX ·YdD with X and Y functions in D→ R or
D→ R3. Finally, let L2(D) and L2(D) denote the Hilbert spaces of finite energy functions. We
denote L2

grad(D),L2
curl,L

2
div spaces such that;

L2
grad = {u∈L2(D) and grad u∈L2(D)}
L2
curl = {u∈L2(D) and curl u∈L2(D)}
L2
div = {u∈L2(D) anddivu∈L2(D)}

(1)

We also denote � the set of outcomes �, F the set of events, P the probability measure that is a
real function from F in [0,1]. We consider a real random variable X . The expectation is written as:

E[X ]=
∫

�
X dP (2)

If the random variable X has a probability density function � : R→[0,+∞] then:

E[X ]=
∫
R
x�(x)dx (3)

L2(�) is the space of random variables with a finite variance (i.e. E[X2] exists).

3. DETERMINISTIC ELECTROKINETIC PROBLEM

3.1. Description of the problem

Consider a contractible domain D (without loops and holes) with S the surface of the domain D.
If E∈L2

curl is the electric field and J∈L2
div the current density, the electrokinetic problem can be

written as follows:

curl E= 0 (4)

divJ= 0 (5)
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1420 S. CLÉNET AND N. IDA

The boundary conditions on the surface S are:

E∧n= 0 on SE (6)

J ·n= 0 on SJ (7)

SE and SJ are surfaces such that SE ∩SJ =0 and SE ∪SJ = S. Electromagnetic field sources are
either prescribed fluxes of the current density J flowing through sub-surfaces of SE or circulations
of the electric field between two distinct surfaces of SE . For the sake of simplicity, we assume
that there is only one source term but the discussion can be easily extended to several source
terms as we will see in an example in Section 6 [14]. The surface SE is split into two distinct
boundaries SE1 and SE2. We assume that the circulation of the electric field between SE1 and SE2
is prescribed as V . The fields E and J are linked by the constitutive relation:

J=�(x)E (8)

With �(x) the conductivity which is a real, strictly positive function of the position x defined
on D. In most deterministic problems in electrokinetics, the conductivity is a piecewise constant
function on N subdomains Di of D:

�(x)=
N∑
i=1

�i Ii (x) (9)

With �i a strictly positive real value and Ii (x) an index function associated with the subdomain
Di (Ii (x)=1 on Di and 0 elsewhere). In the following, the exact solution of the above problem
is denoted as (Eex,Jex).

3.2. Error estimation

Solving the previous problem using a numerical method such as the FEM yields an approximate
solution. An error estimator can be used to assess the quality of the solution. Consider a pair of
fields (Ead,Jad) such that Ead satisfies (4) and (6) and Jad satisfies (5) and (7). As the conductivity
is a strictly positive value on the whole domain D, we can define two scalar products (, )� and
(, )�−1 from the standard scalar product defined on D:

(X,Y)� = (X, �Y)D (10)

(X,Y)�−1 = (�−1X, Y)D (11)

Two norms can then be deduced from (10) and (11):

‖X‖� =√
(X,X)�

‖X‖�−1 =√
(X,X)�−1

(12)

It has been shown that (Prager–Synge’s Theorem [13]):

�2=‖Ead−�−1Jad‖2� =‖Ead−Eex‖2�+‖Jad−Jex‖2�−1=4

∥∥∥∥Ead+�−1Jad
2

−Eex

∥∥∥∥
2

�
(13)

The scalar � is the distance between the fields (Ead,Jad) and this distance is proportional to the
distance between an average field (Ead+�−1Jad)/2 and the exact solution. The scalar � is an
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error estimator and can be calculated from a pair of admissible fields (Ead,Jad), using (13). The
dimension of � is J1/2 (J:Joules) and has no real physical meaning. In that sense, the unit of the
error will not be indicated in the following. It can be shown also that the following inequality
exists:

WE = 1
2‖Ead‖2�

Wex = 1
2‖Eex‖2� = 1

2
‖Jex‖2�−1, WJ�Wex�WE

WJ = 1
2‖Jad‖2�−1

(14)

It can also be seen from (14) that the admissible fields yield energies WE and WJ that bound the
exact energy Wex of the system.

3.3. Calculation of the admissible solutions

In the following, we will show how the two admissible fields Ead and Jad can be calculated by
solving two complementary problems. In fact, two potential formulations can be used to solve the
equation system described in Section 3.1. As E is curl free:

E=−grad�+V b (15)

With � a function of L2(D) such that:

�=0 on SE1 and �=0 on SE2 (16)

With b∈L2
curl a curl free function with a circulation equal to one between SE1 and SE2. E, written

under the form (15), satisfies implicitly (4) and (6) and is, therefore, admissible. The equation to
be solved in the scalar potential formulation is then:

div� grad�=V div(� b) (17)

Similarly, since J is divergence free, it derives from the curl of a vector potential T∈L2
curl. Since

the surface SJ is not contractible, the boundary conditions for the tangential component of the
vector T are not homogeneous. In fact, the flux flowing across any surface in D with boundary on
SJ is zero and consequently the fluxes flowing across SE1 and SE2 are zero. To account for the
boundary conditions (7), an additional field N∈L2

div can be introduced such that:

divN=0 and
∫
SE1

N ·ndS=−
∫
SE2

N ·ndS (18)

Then, the current density can be written as:

J= curlT+ IN (19)

T×n= 0 on SJ (20)

Let I be the current flowing from SE1 to SE2. Introducing (19) into (4), the equation to be solved
with the vector potential T as unknown is then:

curl[�−1curl T]=−Icurl[�−1N] (21)
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The current I is a natural source term for the vector potential formulation but since in our problem
the circulation of E is imposed, an additional relation has to be added linking the prescribed
value V with the current, which becomes an additional degree of freedom (DOF) [15]:

−(E,N)=V (22)

Whitney elements are commonly used to approximate the potentials and the fields in electromag-
netics [16]. We consider a simplicial mesh M with n0 nodes, n1 edges, n2 facets and n3 elements.
We consider the sequence of spaces W0, W1 and W2 which are the nodal element space, the
edge element space and the facet element space, respectively. As D is contractible, we have the
following properties:

Im(grad W0)=Ker(curl W1) (23)

Im(curl W1)=Ker(divW2) (24a)

With Im( f ) and Ker( f ) the co-domain and the kernel of the operator f respectively. According
to (15) and (23), � and E are in W0 and W1 respectively. According to (19) and (24a), T and J
(and N ) are in W1 and W2, respectively. We denote w0i the nodal shape function associated with
node i , w1i the shape function associated with edge i and w2i the shape function associated with
facet i . We denote N0E and N1E the sets of nodes and edges located on the boundary SE . The
potential � and the field E are then written as:

�=
n0∑
i=1

i /∈N0E

�iw0i and E=
n1∑
i=1

i /∈N1E

Eiw1i (24b)

The fields � and E satisfy implicitly the boundary conditions (16) and (6) on SE . Similarly, if
N1J and N2J are the sets of edges and facets on the surfaces SJ , the potential T and the current
density J can be approximated by:

T=
n1∑
i=1

i /∈N1J

Tiw1i and J=
n2∑
i=1

i /∈N2J

Jiw2i (25)

To solve both potential formulations numerically, the weak forms of (15) or of (18) are used and the
Galerkin method is applied. The solution of the two potential formulations with a numerical method
gives the pair of admissible fields as (Ead=−grad�+V b, Jad=curl T+ IN). The numerical
error can then be estimated using (13).

3.4. Application

Consider a structure made of four aluminum sections. Three identical sections are affixed on the
fourth (main section). We propose to take into account the contact resistances that exist between
the upper sections and the main section when they are affixed together. To do so, an intermediate
resistive layer is introduced between each two sections in contact. The geometry of the structure is
shown in Figure 1. Figure 2 shows the boundary conditions. The normal component of the current
density cancels everywhere except on the three surfaces where the tangential component of E is
equal to zero. On these three surfaces, the voltage is imposed. We denote I1 and I2 the currents
flowing through the surface on which the voltage is prescribed as 1V. The conductivity of the
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Figure 1. Description of the device studied (dimension are in mm).
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Figure 2. Boundary conditions and current density distribution calculated
using the vector potential formulation.

Table I. Specifications of the four meshes.

Mesh 1 Mesh 2 Mesh 3 Mesh 4

Number of nodes 148 352 918 2747
Number of edges 675 1733 4873 15421
Number of unknowns � 131 324 870 2647
Number of unknowns T 331 882 2771 9599

aluminum is equal to 37MSm−1, whereas in the contact resistance area the conductivity is equal
to 0.64MSm−1. The current density distribution is given in Figure 2. We have considered four
meshes whose specifications are given in Table I. Meshes 1 and 2 are shown in Figure 3.

The initial problem was solved with the four meshes and the two potential formulations. The
scalar potential � was expanded using linear nodal shape functions (24b). The vector potential T
was decomposed in the edge element space (25). An estimate of the numerical error was calculated
from � and T, using (13). Figure 4 shows the evolution of the error estimate reported as a function
of the number of elements on a log–log scale. The error decreases almost linearly with the increase
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Figure 3. Mesh 1 (left) and Mesh 2 (right).
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Figure 4. Evolution of the error estimate as a function of the number of
elements of the mesh on a log–log scale.

in the number of elements. This behavior is expected from the fact that linear functions were used
for the approximation. The evolution of the energies given for the two formulations is given in
Figure 5. Both energies converge to the exact solution bounding it, as the number of elements
increases, as was indicated in (14).

4. STOCHASTIC ELECTROKINETIC PROBLEM

We now assume that some conductivities �i are random variables. The conductivity is then
written as:

�(x,�)=
N∑
i=1

�i (�)Ii (x) (26)

With the functions Ii (x) defined in (9).
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Figure 5. Evolution of the energies given by the two formulations as a function of the number of elements.

Remark
In the literature, it is often assumed that the coefficient of the constitutive law (for example the
conductivity in our case) is a random field with a given covariance function. The random field is
then approximated by a truncated Karhunen–Loeve expansion [17]. The expression is very similar
to the expression in (26) where the support of the functions Ii (x) depending on the x parameter
is defined on the whole domain and where the random variables �i (�) are uncorrelated. For the
sake of simplicity, they are often assumed to be independent. Consequently, the following can be
easily extended to the case where a truncated Karhunen–Loeve expansion is used to represent the
conductivity with independent random variables.

If the conductivity �i has a constant value (i.e. deterministic) on a subdomain Di , it can be
still considered a random variable �i (�) with a single value �I with a probability equal to one.
Therefore, (19) holds even if conductivities �i are constant on subdomains Di . From (9), it can be
seen that the electric field intensity E and the current density J are now also random and depend on
�∈�. We will assume that the boundaries of the domain and the boundary conditions are known
exactly. The boundary conditions are the same as those of the deterministic problem. The problem
to be solved is given by Equations (4)–(7) and (26). The conductivities are assumed to belong to
a bounded strictly positive interval that reads:

0<�min
i ��i (�)��max

i i ∈[1,N ] (27)

For each combination of the N -tuple (�1, . . .�N ), the random conductivities are bounded
according to (27). The problem is well posed and has a unique solution denoted as (Eex(x, �),Jex
(x,�)) [17]. It is useful, as we will see later, to define the space of approximation such that the
input data of the problem depend on classical random variables such as standard normal random
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1426 S. CLÉNET AND N. IDA

variables, uniform random variables, etc. Therefore, in the following, we will assume that �i (�) is
a function of a random variable �i (�) defined on the interval �i with a probability density function
�i (�i ). We denote �=⊗N

i=1�i and the joint probability density function �(n)=�(�1,�2, . . . ,�n)=∏N
i=1�i (�i ).

Remark
If the N random variables �1(�), . . . ,�N (�) are not independent of each other, it may be possible to
express them as a function of independent random variables �i using appropriate transformations.

If we consider now that two fields are admissible if we have for any � of �:

curl E(x,�) = 0, E(x,�)×n=0 on SE (28)

divJ(x,�) = 0, J(x,�) ·n=0 on SJ (29)

We get for any �,E(x,�) and J(x,�) that satisfy (13).
We consider the expectation 〈�2〉=E[�2(�)]=E[‖E(x,�)−�−1(x,�)J(x,�)‖2�]. The term is

equal to zero if E(x,�) and J(x,�) satisfy the constitutive relations in a mean-square sense and so
the couples (E(x,�),J(x,�)) and (Eex(x,�),Jex(x,�)) are equal in a mean-square sense. Moreover,
according to (13), � is a measure of the distance between the exact solution and an average field
Eavg(x,�):

〈�2〉=4E[‖Eavg(x,�)−Eex(x,�)‖2�] with Eavg(x,�)= E(x,�)+�−1(x,�)J(x,�)
2

(30)

We also define the energies WE (x,�) and WJ (x,�) (see (14)):

WE (�) = 1
2‖E(x,�)‖2�

Wex(�) = 1
2‖Eex(x,�)‖2� = 1

2‖Jex(x,�)‖2�−1

WJ (�) = 1
2‖J(x,�)‖2�−1

(31)

Using an approach similar to the one proposed in [12], we look at the cumulative probability
density function �E (W ), �ex (W ) and �J (W ):

�E (W ) = P(WE (�)�W )

�ex(W ) = P(Wex(�)�W )

�J (W ) = P(WJ (�)�W )

(32)

Then, according to the inequality (12), we have:

�E (W )��ex (W )��J (W ) (33)

The expression above can be used to assess the accuracy of the model around the tail of the
probability density function. In fact, if in that area the difference between �E (W ) and �J (W )

is high, the results given by the model cannot be considered as accurate especially if the aim is
failure analysis.
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Expanding the expression of �(�), we obtain:

�2(�)=‖E(x,�)−�−1(x,�)J(x,�)‖2� =2WE (�)+2WJ (�)−2(E(x,�),J(x,�))D (34)

This expression is in fact the expression that has to be implemented to calculate the error and its
expectation. The main interest in this expression is that there are at most two successive products
of random fields (for example �(x,�)E(x,�) ·E(x,�)) which simplify the calculation compared
with the original expression (left-hand side of (34)) which has three successive products.

In the following we take advantage of these properties to estimate a posteriori the numerical error
due to the discretization of the spatial and the random space. We are looking at solutions E(x,�) and
J(x,�) in L2(�)⊗L2

curl(D) and L2(�)⊗L2
div(D). To approximate the spaces L2

grad(D), L2
curl(D)

and L2
div(D), we use Whitney elements (see (23) and (24a)). To approximate the space L2(�), we

use a subset of orthogonal functions (�k[n(�)])1�k�Pout of a basis (�k[n(�)])1�k�∞ that spans
L2(�):

E(�i� j )=qi �i j and E(�i )=mi (35)

Where (mi ,qi ) are real numbers and �i j the Kronecker delta function. Generally, the functions
(�k[�(�)])1�k�Pout are normalized and the qi are equal to one.

Different basis functions can be used such as the Wiener–Askey polynomials [6, 18, 19] or the
Wiener–Haar decomposition [5]. The ‘best’ choice for the orthogonal basis for the approximations
is always an issue. In [5], it is shown that the Wiener–Haar expansion is more robust when the
solution has a steep dependence (or discontinuity) on the input random variables of the problem but
when the solution is smooth, the Wiener–Askey expansion exhibits faster convergence. In practice
it is convenient to use the same basis of approximation in the random dimension to solve both
potential formulations. We will assume in the following that we have two fields E(x,�) and J(x,�).
These fields are given, after solving the initial stochastic model numerically and are written as:

E(x,�) =
n1∑
i=1

Pout∑
j=1

E j
i w1i (x)�

j (�)=
n1∑
i=1

Ei (�)w1i (x)=
Pout∑
j=1

E j (x)� j (�)

J(x,�) =
n2∑
i=1

Pout∑
j=1

J j
i w2i (x)�

j (�)=
n2∑
i=1

Ji (�)w2i (x)=
Pout∑
j=1

J j (x)� j (�)

(36)

As (� j )1� j�Pout are linearly independent functions, it means that for all j (1� j�Pout), E j (x)
and J j (x) are admissible in the ‘deterministic’ sense (i.e. E j (x) satisfying (4) and (6) and J j (x)
satisfying (5) and (7)). To calculate the error �, we also need to expand the conductivities �i and
their inverse:

�i (�) =
∞∑
j=1

� j
i �

j (�)

�−1
i (�) =

∞∑
j=1

inv� j
i �

j (�)

(37)

Generally, the expansion can be finite or infinite. Depending on the probability density function of
the conductivity and of the probability density functions of the �i . For example, if a conductivity �i
is a uniform random variable, the Wiener–Askey expansion with Legendre polynomial �i is finite,
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having only two terms. The Wiener–Askey expansion with Hermite polynomial (see Section 6 for
more details) is infinite. The expressions of the previous terms in (31) are:

(E(x,�),J(x,�))D =
Pout∑
i=1

Pout∑
j=1

(Ei (x),J j (x))D�i (�)� j (�)

WE (�) = 1

2

Pout∑
i=1

Pout∑
j=1

∞∑
m=1

N∑
l=1

�ml (Il(x)Ei (x),E j (x))D�i (�)� j (�)�m(�)

WJ (�) = 1

2

Pout∑
i=1

Pout∑
j=1

∞∑
m=1

N∑
l=1

inv�
m
l (Il(x)Ji (x),J j (x))D�i (�)� j (�)�m(�)

(38)

As Il(x) is equal to 1 in Dl and zero elsewhere, the scalar product has to be calculated only on Dl
which can reduce the computation effort. Now, we write the three terms as a linear combination
of (�k)1�k�∞. The product (� j�i )1�i�Pout, 1� j�Pout can be written as a linear combination of
(�k)1�k�∞:

�i (�)� j (�)=
∞∑
k=1

di jk�k(�) (39)

As the basis has been assumed orthogonal it is easy to see that the coefficient di jk is given by:

di jk = E(�i (�)� j (�)�k(�))

E(�k(�)2)
(40)

If the Wiener–Askey expansion is used, then � j is an N -dimensional polynomial of random
variables of maximum order pout that yields Pout=C pout

N+pout
basis functions. The product �i� j is

also an N -dimensional polynomial (N is the number of random variables, see (26)) with an order
of at most 2∗ pout. This product can be written as a linear combination of the basis functions �k

with 1�k�2Pout (2Pout is the number of the basis functions with order less or equal to 2∗ pout) that
are orthogonal by definition to all basis function �k with k>2Pout Then, the expectation �i� j�k

is equal to zero, as is the term di jk , if the index k is higher than that 2Pout (the order of �k is
greater than 2∗ pout). Consequently, the sum in that case is finite (39) and we have:

�i (�)� j (�)=
2Pout∑
k=1

di jk�k(�) (41)

If the Wiener–Haar decomposition is used, the space of approximation is stable with the product
meaning that the product of two basis functions �k� j can be always written has a linear combi-
nation of the basis functions (� j )1�i�Pout . Consequently, the sum is also finite and the number of
terms is 2Pout= Pout. In the following, we will assume that the sum is finite and equals to 2Pout.
If, for a particular numerical implementation, this condition is not satisfied, a de facto truncation
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will be necessary until this condition is fulfilled

(E(x,�),J(x,�))D =
2Pout∑
k=1

ak�k(�), ak =
Pout∑
i=1

Pout∑
j=1

di jk(Ei (x),J j (x))D

WE (�) = 1

2

N∑
l=1

∞∑
m=1

�ml

2Pout∑
k=1

bkl�k(�)�m(�)

bkl =
Pout∑
i=1

Pout∑
j=1

di jk(Il(x)Ei (x),E j (x))D

WJ (�) = 1

2

N∑
l=1

∞∑
m=1

inv�
m
l

2Pout∑
k=1

ckl�k(�)�m(�)

ckl =
Pout∑
i=1

Pout∑
j=1

di jk(Il(x)Ji (x),J j (x))D

(42)

As the basis is orthogonal and using the expression (34), we have:

〈�2〉=E(�2(�))=
N∑
l=1

[
2Pout∑
k=1

qk[�kl bkl + inv�
k
l c

kl ]−2
2Pout∑
k=1

mkak
]

(43)

First, we note that the second sum is generally reduced to one term a1 because the expectation
of the basis function generally vanishes except for the first term of the basis. Second, only the
2Pout terms of the conductivities and their inverses are involved in the expression of the error.
Consequently, to calculate the error numerically, we need only the truncated expansion of the
conductivities up to 2Pout. The other terms are not required.

Remark
The term 〈�〉 gives an information on the error on the whole expression of E(x,�) and J(x,�)
given by (36). It is difficult to extract from the relationship (43) information to gain insight into
the error on each statistical moment of the fields. In fact, the moment of order nth of the fields is
the expectation of the term E(x,�)−E0(x) (or J(x,�)−J0(x)) raised to the power of n and 〈�〉
depends on the expectation of the term E(x,�)−�(x,�) J(x,�). Nevertheless, if we have look at
the energy, we have WJ (�)�Wex(�)�WE (�), we can deduce some inequalities on the statistical
moments on the energy. If we denote mJ ,mex and mE the means of WJ (�), Wex(�) and WE (�),
respectively, we have mJ�mex�mE . Moreover, since the energy is always positive, the variance of
the energy V [Wex(�)] is bound. In fact, we have: E[W 2

J (�)]−mE�V [Wex(�)]�E[W 2
E (�)]−mJ .

5. APPLICATION

5.1. Description of the problem

Consider again the structure in Figure 1, described so far in a deterministic context. Here we
will assume that the contact resistances are random. The conductivity of the four aluminum
sections are assumed to be known and fixed at �al=33MSm−1. The three thin layers between
the four aluminum sections can have uniform but random conductivities. We will consider two
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cases. In the first case, the conductivity �1(�) is assumed to be a uniform random variable
whereas conductivities �2 and �3 are constant. In the second case, the three conductivities are
independent uniform random variables. In the following, we will develop the calculation only for
the second case, the first case can be easily deduced from the first. To approximate the space
L2(�), we use the Wiener–Askey polynomial expansion. In [18], it has been shown that the choice
of polynomial basis plays an important role in the convergence rate towards the exact solution.
We will try to show the same behavior by using the error estimator. We will consider two different
polynomial expansions based on the Legendre polynomials (�k

p[u1(�),u2(�),u3(�)])1�k�Pout with
u1(�),u2(�), and u3(�) independent uniform random variables in the interval [−1,1] and the
Hermite polynomials (�k

H [�1(�),�2(�),�3(�)])1�k�Pout with �1(�),�2(�) and �3(�) independent
standard normal random variables.

To calculate the expansion of the admissible electric field E(x,�) on a mesh M , we use the
scalar potential formulation. Using the orthogonality of the approximation basis, the term E j

i of
the expansion introduced in (36) can be calculated as:

E j
i = E[Ei (�)� j (�)]

E[� j (�)2] (44)

The denominator can generally be calculated analytically. The numerator can be estimated using a
Monte Carlo Simulation or other sampling methods. The experience in the literature [20] indicates
that for a small number of input random variables, it is more suitable to use a quadrature method
to approximate the integral:

E[Ei (�)� j (�)]=
∫

�
Ei (n)�

j (n)�(n)dn (45)

In our case, the Gauss quadrature was used but it is worth mentioning that other methods, such as
sparse grid methods (Smolyack’s quadrature) can be applied equally well. In that case the previous
term is approximated by the following expression:

E[Ei (�)� j (�)]=
m1∑
i1=1

. . .
mn∑
in=1

	i1 . . .	inE j (�i1, . . . ,�in)�
j (�i1, . . . ,�in) (46)

The choice of the Gauss points (�i j )1�i j�mj and of the associated weights (	i j )1�i j�mj depends
on the probability density function associated with the j th input random variable � j (�). If the
input random variable � j (�) is standard normal then the Gauss points will be the roots of the
Hermite polynomials of order m j . In the same way, if the input random variable � j (�) is uniform
then the Gauss points will be the roots of the Legendre polynomials of order m j . It should be
noted that since each term E j (�i1, . . . ,�in) is obtained from the solution of a scalar potential

formulation, the random field E(x,�) given by (36) remains admissible even though the terms E j
i

are an approximation of (44). We note as well that the error estimator will also take into account
the discrepancy error introduced by the quadrature method in addition to the error due to the
approximation in both the spatial and random dimensions.

Remark
We mentioned above that the numerator of (44) could also be estimated using a sampling method.
In that case too, the estimation error will be taken into account in the term 〈�〉 given by (46). It
should be noted that the error estimator can be used here to determine the number of sampling

Copyright q 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2010; 81:1417–1438
DOI: 10.1002/nme



ERROR ESTIMATION IN A STOCHASTIC FINITE ELEMENT METHOD 1431

points online. In fact, the error 〈�〉 can be calculated during the sampling process which can be
stopped as soon as the variation of 〈�〉 remains small (that is to say that the sampling error on the
term E j

i is negligible versus the errors of approximation).

5.2. Error calculation

First, we consider the case in which only one conductivity (�1) is a uniform random variable on
the interval [�min,�max]. The values �min and �max are reported in Table II and also the mean
and the standard deviation. The extreme values of �min and �max correspond approximately to
the variation of the conductivities that may be present when two aluminium parts are welded
together [21]. For each mesh, the expansion up to the order pout=6 for the electric field intensity
and for the current density were calculated using the projection method using both Hermite (�1 is a
standard normal variable) and Legendre (�1 is uniform between [−1,1]) to approximate the random
dimension. The conductivity and its inverse must also be expanded using these polynomials. The
decomposition of the conductivity using Legendre polynomials is straightforward because only
two terms are needed; �11—the average of the conductivity and �21—half of the length of the
interval of variation of the random variable. The expansion of the inverse has an infinite number
of terms. To calculate them we used a Galerkin method as proposed in [22]. The expansion of the
conductivity �−1

1 was truncated up to the order pin=12 and we denote �−1
1p as its approximation.

The terms (inv�
j
1p)1� j�pin were calculated as follows. The product �1�

−1
1p is projected on the base

(�k)1�k�Pin (Pin is the number of terms of the polynomial basis corresponding to an order equal
to pin). Using the terms di jk introduced in (40), we obtain the following linear system to be solved
to get the values of (inv�il )1�i�Pin :

Pin∑
i=1

(
Pin∑
j=1

di jk� j
1

)
inv�i1=�k, 1�k�Pin, �k =1 if k=1 else k=0 (47)

Decomposition of the conductivity using the Hermite polynomial was also used. The coefficients
of the conductivity can be obtained analytically:

�11 = �min+�max

2

�2i1 = (−1)i−1 �max−�min

22i−1
√


(2i−1)(i−1)!
(48)

The coefficients of the expansion of the inverse of the conductivity were calculated using the
Galerkin approach presented in (47).

For each Gauss point (�i1,�i2,...,�in) (see (46)), the conductivities (�1,...,�n) and their inverse
(�−1

1,...,�
−1
n ) are calculated using (37). The scalar and vector potential formulations are solved and

the quadrature vectors E(�i1,�i2,...,�in) and J(�i1,�i2,...,�in) are used to calculate an approximation

Table II. Specifications of the uniform random law of the random conductivities.

�min �max Mean Standard deviation

Values (MSm−1) 0.141 1.13 0.635 0.286
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Figure 6. Evolution of the error as a function of the order of the expansion with one random conductivity.

of the terms E j
i and J j

i . We choose the same number d of Gauss points along each ‘random
dimension’ �i with 1�i�n. Therefore, we have to solve the two complementary formulations dn

times to finally obtain the admissible approximated fields.
Figure 6 shows the evolution of the error versus the order of the expansion pout for the

4 meshes. In other words, the error shown is calculated using (43) with the expansion up to order
2 of the fields E(x,�) and J(x,�). It is noted that the convergence is little faster with the Legendre
polynomials but in both cases, for orders 3 or higher, the asymptotic value corresponding to the
average of the numerical error is almost entirely due to spatial discretization. The evolution of
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Figure 7. Evolution of the error as a function of the number of elements for different
orders when only one conductivity is random.

the error as a function of the number of elements is given in Figure 7 for orders of expansion
from 1 to 6. We can see that for Legendre polynomials, above the order 3, the evolution of the
error is almost the same. Except for low orders, we notice that the evolution of the error is very
similar to the one given in Figure 4, obtained for the deterministic case. For low orders the speed
of convergence with the number of elements is slower. We can also see that increasing the order
does not speed up the convergence above a given order. Clearly, a compromise has to be found.

We consider now the case of all three conductivities corresponding to the region of contact
resistances being random. The evolution of the error as a function of the expansion order is given in
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Figure 8. Evolution of the error as a function of the order of the expansion with 3 random conductivities.

Figure 8. A faster convergence with the Legendre Polynomials is noted. This appears more clearly
if we look at both curves corresponding to mesh 3. In fact, with the Legendre polynomials, with
order 3 the global error is almost equal to the error due to the space discretization (the error equals
almost 80). With Hermite polynomials, convergence is not reached for an order 4 (i.e. the error
is mostly due to space discretization). The value of the error is greater than 100. As can be seen
in this example, the choice of the orthogonal polynomial basis influences the convergence speed.
The evolution of the error as a function of the number of elements for a given order of expansion
is shown in Figure 9. The speed of convergence depends on the order of expansion much more
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Figure 9. Evolution of the error as a function of the number of elements for different
orders with 3 random conductivities.

than in the previous example. Finally, Figure 10 compares the evolution of the error as a function
of the number of DoFs for both expansions. The number of DoFs is equal to the product of the
number of nodes multiplied by Pout. The integer Pout depends on the order of the expansion and
is equal to 4, 10, 20 and 35 for an order of expansion of 1, 2, 3 and 4, respectively. The number of
DoFs is an indication of the computation requirements in terms of time and memory space. This
figure confirms that for a given number of DoFs better results can be obtained with the Legendre
polynomial. Nevertheless, the difference between the two expansions for a given number of DoFs
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Figure 10. Evolution of the error as a function of the degrees of freedom (product of
the number of nodes and Pout) for an expansion with multivariate Hermite Polynomials
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Figure 11. Evolution of the CDF of the energies calculated with the two potential
formulations for two different meshes.

can be very small. As was stated in the previous example, this figure shows very clearly that the
speed of convergence depends highly on the order of expansion and should be chosen carefully.
The error estimator proposed here is a very useful tool for that purpose.
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Figure 11 shows the Cumulative Density Function (CDF) of the energies WE (�) and WJ (�)

given by (42). It shows that the property (33) is satisfied but also that for the mesh 4, the difference
between the CDF obtained with the two formulations is very small.

6. CONCLUSIONS

In this paper, we studied an error estimator based on the constitutive relation error in the case
of stochastic magnetostatic problems. This estimator requires two admissible fields that satisfy
the equilibrium equations of the problem. We have shown how to calculate this error from a
pair of admissible fields given by an expansion of orthogonal functions. The error estimate was
applied to an example where both admissible fields are obtained by projection of solutions of
two potential formulations. The example shows clearly the influence of the choice of the basis
for the discretization of the random dimension. Moreover, the example confirms that the order of
expansion of the basis must be chosen according to the spatial mesh and the error estimator is an
efficient tool for that purpose. This can be eventually incorporated in an automatic procedure.
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