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The solution of stochastic partial differential equations (PDEs) using the spectral stochastic finite-element method (SSFEM) can lead
to a very large linear system of equations. If the random input data are independent, it can be shown that the initial linear system can be
split into smaller independent linear systems by using double orthogonal polynomials. In this paper, we propose the use of this approach
in the case of dual potential formulations in electrokinetics. The method is applied to an electrokinetic problem taking into account the
uncertainties on contact resistances.
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I. INTRODUCTION

T HE spectral stochastic finite-element method (SSFEM)
can be used to solve the stochastic static electromag-

netics problem. This method has originally been proposed in
mechanics by Ghanem [1] in the early 1990s and has recently
been applied to solution of stochastic static electromagnetics
problems [2], [3]. The method is very accurate but requires the
solution of a large linear system. The number of unknowns in
the system is equal to the product of the number of degrees of
freedom (DoFs), required to discretize the spatial dimen-
sion (spatial mesh), and the number of DoFs required to
discretize the random dimension. Even though the system to
solve has special properties, its solution can be tricky when the
number of random input variables is greater than about a dozen.
If the randomness is in the behavior laws and the input random
variables are independent, it has been shown by Babuska et al.
[4] that using special polynomials (so-called double orthog-
onal polynomials) as the basis of discretization of the random
dimension, the SSFEM yields independent equation sys-
tems of size . The double orthogonal polynomials have been
previously used to solve the scalar potential formulation in
static electromagnetics [5]. Here, we propose to solve the dual
potential formulations using double orthogonal polynomials.
Some properties related to power bound are pointed out in the
process.

In the first part, the dual potential formulations are presented
in the stochastic case. In the second part, the method of con-
struction of the multivariate double orthogonal polynomials is
detailed. In the third part, we show how to define the determin-
istic problem to solve starting with the expression of the double
orthogonal polynomials. Finally, an example is treated.

II. DESCRIPTION OF THE STOCHASTIC PROBLEM

On a contractible domain with a boundary , the electroki-
netic problem can be written as

(1)
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(2)
Boundary conditions are imposed on . To simplify the
problem, we will assume that we have only two disjoint sur-
faces and on which

(3)

with the outward unit vector on . On the complement of ,
denoted , we have

(4)

The behavior law can be written on as

(5)

is the random resistivity with the outcome belonging
to the space . We will assume that the resistivity is equal to a
random variable on disjoint subdomains of

(6)

where is a function that is equal to 1 on the subdomain
and 0 elsewhere. Since the resistivity is random, and

are random fields. To solve the previous problems, two potential
formulations can be used. Since, is curl free, it can be
written as the gradient of a scalar function . The equation
to solve is then

(7)

We have Neumann boundary conditions on and Dirichlet
type on with

on on (8)

To obtain an unknown with homogeneous boundary conditions,
we consider a field on such that satisfies (2) and (3)
and such that the circulation of from to is equal
to 1. We now consider the new problem with the scalar potential

and with homogenous boundary conditions on

(9)

If we denote the current flowing through and , this
current can be calculated as

(10)
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Since is divergence free, can be written as the
curl of the vector potential . The equation to solve is
then

(11)

has nonhomogenous boundary conditions on . We
therefore introduce a field satisfying (1) and (4) such that
the flux of through the surface is equal to 1. It can be
shown that the problem to solve is

(12)

where is the unknown with homogeneous boundary condi-
tions. The voltage can be calculated using the following
equation:

(13)

If the voltage is known, then (13) provides an additional equa-
tion required to calculate the value of the current. If the voltage
has a deterministic value , the current is then a random vari-
able .

III. APPROXIMATION OF THE POTENTIALS USING DOUBLE

ORTHOGONAL POLYNOMIALS

In the following, we detail the solution of the vector potential
formulation. In the deterministic case, the vector potential
is approximated using edge shape functions. Let us denote
the set of edges, the sets of edges not located on and

the function associated with the edge . The cardinal of
the set will also be denoted . We will denote
the space generated by the functions associated with the edges
belonging to . Functions in have naturally homoge-
neous boundary conditions (3) on .

We consider the space of functions depending on
the random variables such that the
variance exists. To approximate this space, we will con-
sider a set of multivariate orthogonal polynomials

if (14)

with the expectation. We will denote the space
generated by this set of polynomials. Various methods have
been proposed to define these polynomials. The most common
polynomials used are the multivariate polynomial based on the
Askey scheme [6]. We are looking for an approximation of the
vector potential in the space , so that
can be written as will be denoted
in the following:

(15)

where are the degrees of freedom we need to determine.
Applying the Galerkin method to a weak form of (11) leads to

linear equations

(16)

where is an square matrix and
an vector. The vector is the vector of the

DoFs . Using (6) for the resistivity allows us to rewrite the

equation system in a different way [3]. We denote the matrices
and , the vectors and the with the coefficients

Then, using the Kronecker product , (16) can be written in
the form [3]

(17)

The size of the linear system (17) can become very large even
with a coarse mesh. If the random variables are indepen-
dent, we can take advantage of this property by using double or-
thogonal polynomials which enables us to get a diagonal
matrix . In that case, we have to solve linear systems of
size instead of the whole system (16).

To construct the multivariate double orthogonal polynomials,
we will first construct for each random variable a set of
polynomials such that

(18)

and which fulfill the following conditions:

(19a)

if (19b)

The first relation is a feature of orthogonal polynomials but
the second is an additional relation. To calculate the coefficients,
we construct a matrix storing .
According to (19a) and (19b) it can be shown that the matrix

satisfies the following two equations:

and (20)

With the coefficients of the matrices
and given by

(21)

where is the probability density function (pdf) of the random
variable and is a diagonal matrix with diagonal coef-
ficients which are not known a priori. We note that the coeffi-
cients are the moments of the random variables and the moments
up to the order are needed to determine the polyno-
mials of order . To find the matrix , a problem can be
solved which consists in finding the real numbers (eigenvalues)

and the vectors (eigenvector) such that

(22)
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The vectors provide the columns of the matrix (so
the coefficients of the polynomials) and the eigenvalues provide
the value of the coefficients . To calculate the coefficients
[see (17)], we need to express as a function of the polyno-
mials

(23)

If the pdf of the random variable has been used as the
weighted function to generate classical orthogonal polynomials
(i.e., with different orders), would have been equal to a
linear combination of the polynomials of zero and first orders.
With the double orthogonal polynomials, the random variable
is a linear combination of all the polynomials. For all random
variables , we have calculated double orthogonal poly-
nomials. In the following, we will assume that all these poly-
nomials have the same order . We will now construct the
set of multivariate polynomials with

that will be used for the approximation in (15)

with

with

and (24)

Since the random variables are assumed to
be independent, we can verify the following properties:

(25)

From these expressions, it can be seen that the multivariate
polynomials remain orthogonal. The second property that of the
nullity of the expectation of the product of two polynomials with
a random variable is also preserved if both are not equal.

To solve the scalar potential formulation, new multivariate
double orthogonal polynomials need to be calculated using the
approach described above considering the conductivity
instead of the resistivity .

IV. SOLUTION OF THE STOCHASTIC PROBLEM

If we use double orthogonal polynomials to approximate the
random dimension, according to the second relation in (25), the
matrix is diagonal (cf., the expression of the coefficients of
the matrix ). If the matrix is diagonal, solving problem

Fig. 1. Description of the device studied and current density distribution ob-
tained for a realization of the random conductivities.

(16) is equivalent to solving independent equation systems
of the size of the deterministic problem. The th problem cor-
responds to a combination of the -uplet with
an integer belonging to . The value is the
value of the coefficient associated with the edge a for the poly-
nomial . Thus, the solution of the th problem gives the
coefficient of the polynomial for all edges.

The calculation of the matrix of the th problem is done as
in the deterministic case with a resistivity given by (6)
where resistivities are not random anymore but equal to .
According to (17), it means that we have to solve deter-
ministic problems with a stiffness matrix given by

(25)

and with a source term equal to

(26)

The coefficients have been introduced in (23) and the co-
efficients are the mean of the random variable .
A method of calculating the terms and is given in the
Appendix. In effect, the stochastic problem can be solved using
a deterministic code.

V. APPLICATION

Consider a structure made of four aluminum sections. Three
identical sections are affixed on the fourth (main section). We
propose to take into account the contact resistances that exist
between the upper sections and the main section when they are
affixed together. To do so, an intermediate resistive layer is in-
troduced between each two sections, forming the contact. The
geometry of the structure and the boundary condition are given
in Fig. 1. We calculate the expectation of power for both formu-
lations and for four meshes . We consider
an approximation of the first, second, third, and fourth order
( , and ) for the multivariate polynomials
which lead to calculation of “determin-
istic” problems. The evolution of the power expectation as a
function of the number of elements is given in Figs. 2 and 3. A
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Fig. 2. Evolution of the power expectation for both formulations and for dif-
ferent order of approximation in the stochastic dimension equal to 1 and 2 and
different meshes.

Fig. 3. Evolution of the power expectation for both formulations and for dif-
ferent order of approximation in the stochastic dimension equal to 3 and 4 and
different meshes.

power bound can be seen in the stochastic case just as in the de-
terministic case. In fact, for any combination of conductivities,
a deterministic problem can be solved leading to the following
power bound:

(27)

with the exact solution and and the values of the
power given, respectively, by the scalar and the vector potential
formulations. Consequently, if we look now at the expectation
of the power, we have

(28)

The difference between the power expectation given by both
formulations is an indication of the numerical error. Therefore,
the closer the energies are, the more accurate the model. Ac-
cording to that statement, we can see that whatever the order of
interpolation, the error decreases with the number of elements.
But it can also be seen that up to an order two the accuracy on
the power mean does not improve much.

VI. CONCLUSION

The use of multivariate double orthogonal polynomials to
solve a stochastic problem in electrokinetics has been presented.

Numerous small linear systems are then solved instead of one
huge linear system obtained with the classical SSFEM. The
method has been successfully applied to an academic example.

APPENDIX

Consider the set of polynomials of order
[the coefficient of the th polynomial are ; see
(18)]. We can express the monome as a linear
combinatison of the previous polynomials

(1.1)

To calculate the coefficients , the
system

(1.2)

can be solved, where the th column of is the coefficient of
the polynomial ranked in increasing order and the vector
with components such that all components are equal to
zero except the th component, which is equal to 1. From that,
it is easy to determine the coefficients and

(1.3)
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