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Abstract: Surface impedance boundary conditions (SIBCs) of highrastiapproxi-
mations basd on the Rytov method are introduced and impledén the A9 finite
element formulation. With first order elements, only firs @aecond order approxima-
tions for the surface impedance are possible. Third ord@€SlIrequire second order
(or higher) finite elements. The order of approximation islimited but only orders
up to three are practical and useful. The method was implegdeén an existing FEM
code and results are shown to validate its use and accuracy.
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1 Introduction

SJRFACE impedance boundary conditions have been used for the purpose of
reduction of the computational space from the very beginning of its introduc
tion. Introduced in 1938 by Schelkunoff [1] and starting with Leontovicthialate
1940’s [2], the concept has been in continuous use and has bekadappa vast
number of applications, first for analytical solutions and then to numeraral c
putation in all areas, in almost any conceivable formulation and application [3
However, the approach to surface impedance boundary conditioniseleasad-

hoc, and almost entirely dependent on the Leontovich condition which ista fir
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order SIBC, that is, the error introduced by its use is directly related tokiine s
depth. In fact, the error is of the order ofﬁb. For this reason, it has found use
mostly in high frequency applications and in fact, the original developmethteof
SIBC was for purpose of calculation of propagation effects of radicewaver the
surface of the earth. A second order surface impedance boundadjtion was
developed by Mitzner based on scattering of electromagnetic waves bycory
bodies [4]. However no higher order SIBCs were developed andsh@USIBCs
for low frequency applications remained sparse. Nevertheless, aajjemethod
for the systematic development of SIBCs of arbitrary order has beenluded by
Rytov [5]. Not only does the method due to Rytov include the first and skoter
conditions (of Leontovich and Mitzner), but it precedes them in time. Theadeth
is based on the perturbation approach and is deceptively simple: Theoetewtr
magnetic fields were assumed to vary exponentially inside the conductoreaad w
written as power series expansion in terms of the skin depth. Equatingpemywet

of the fields at the surface (in air and in the conductor) provided theopppte
order SIBCs. Because of this, high order SIBCs could be developesiniply
retaining additional terms in the expansion [2, 5] and, perhaps more sajlfic

it provides a systematic method of evaluation of errors, allowing one to match the
order of the SIBC with the needs of computation [6]. Newer developments ha
taken the Rytov process further. In an attempt to extend its applicability and to
better define the errors, the expansion was re-defined in terms of théeatieen
the skin depth and the characteristic dimension of the conductors (i.e. thickne
radius or, in general, the smallest relevant dimension that will influenceothe s
tion. For example, in a thin conductor, of thicknésthe ratio isp = 4/t and this

is required to be small, the smaller, the lower the error introduced by theceurfa
impedance approximation [2, 6].

From an implementation point of view, and especially in implementing the
SIBC into existing FEM codes, there are few requirements and thesether ra
easy to meet. The first and most obvious is that on the impedance suriaed, th
emental contribution must be modified. However, once a 1st order SIBGden
implemented, higher order SIBCs can be implemented by simply adding terms due
to the expansion. This means that the additional work needed is minor. The re
sulting matrices retain their properties to a large extent (symmetry, conditioning)
resulting in a system that is not very different than the system befor€svigere
introduced. However, because conductors are removed from thigosaliomain,
the system is smaller and convergence faster.

This work discusses introduction of 1st and 2nd order SIBCs in an existin
finite element code based on the- ¢ formulation. Because the existing code uses
only 1st order edge elements, only 1st and 2nd order SIBCs can be inmiézine
3rd order SIBCs require 2nd order finite elements.
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2 Formulation

One starts with the following two relations in terms Af(the magnetic vector
potential) andp (the electric scalar potential) [7]:

Dx(%DxA)—l—G(ij—&-D(p) =Js (1)
Ogo(jow A+ Og) =0 2

For linear conductivity one can write instead of (2)
Og(jwA+D0@) =0 (3)

It is assumed that any applied current density is in conductors or coilghah
Coulomb’s gauge has been applied. Low frequency is assumed. Ttefisgtion
applies to conducting or nonconducting regions (in the latter case the aovityu
is zero) whereas the 2nd equation applies in conducting regions aldoegieg
the zero divergence of induced currents.

The solution domain is assumed to be made of a general domain which encloses
magnetic, nonmagnetic, conducting and nonconducting media. Sources @an
the nonconducting space or in the conducting space.

Through use of weighted residuals we get:

/[Dx(%DxA)+G(ja)A+D(p)—JS]ngVzO (@)

[B9tiwA+0p)) wav—0 (5)

wherew are vector weighting functions and amdare scalar weighting functions.
Assuming a finite element mesh divided into edge elements (with properly de-
fined edges, nodes and facets), we approximate the physical quartitows:

Ne Nn Nt
A=Y AW, = Wi, Js= ) Jiwis, 6
Lot 072 My 3= ) i ©)

wheree stands for the edges of the mealior its nodes and for its facetsw, are
interpolation functions on edges;, are interpolation functions on nodes ang
are interpolation functions on facets, is the number of edges (in an elemei),
the number of nodes aridk the number of facets.

1 .
J 10 We)g(0 x we) -+ oweg cofwe)T (o) + oW ginghch] v

A\

N¢ (7)
/Weg[H x Aldr = /wez wirdv
r % =1
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/ [00Wngjw(We) T (Ae)T 4 OWegOWnghdv]dv

\
(8)
— /[Wnojwwe(Ae)T +WnhoOWn@h]g A dlr =0
'r
Handling the right hand side contributions due to current densities defyara
the elemental matrix looks as follows:

[0 x we]Tg[0 x we]dv+ jw [ o[we] Tglweldv [ owe] " g[Owg]dv A
' (10w glweldv L7 o (0w TglCwnlav [cp]

Jw
9)

The first term in the matrix is evaluated over the whole volume whereas the
other three are only evaluated on the conducting volumes. The surfageaiste
arising from integration by parts have been set to zero assuming that bopumgs
boundary conditions are applied on the outer boundaries. As boundadjtions
it is assumed that either the norntalor tangentialH are enforced on the outer
boundaries. On conductors, either the tangential componeBtafthe normal
component of] are enforced. These surface integrals terms will be however re-
introduced on the impedance surfaces which can in fact be internal to gteane
can coincide patrtially or entirely with the outer boundaries. The surfacgradse
are only evaluated for the impedance boundary.

The surface integrals are over the whole domain surfaces, includingriec-
tor surface where we will apply the SIBCs. However, since the outandemies are
already being taken care of, we need not worry about them. Ther#fersurface
integral above will only apply to the impedance surface.

To introduce the surface impedance, we start with Eq. (9) and write for the
surface integral:

v

1
Wag[H x Aldl = | —wag[(O x A) x A]dr (10)

The surface term in Eq. (8) can be set to zero simply from the fact thaiattmeal
component of the induced currents must be zero on the impedanceesurfac
On the impedance surface itself we write the surface current density as:

R .1
JS:Hxn:Z[an]xn:Z

S
whereZs is the surface impedance. The divergence of this current density must b
zero:

[A % (jowA + Og)] x A (11)

Dgzis[ﬁx(ijmcp)}xﬁ:o (12)
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Writing this in the Galerkin form we have on the impedance surface:

/ zi [ x (OWngjw(We)T (Ae)T -+ DWngOwn@) | x A dr =0 (13)
r S

The termH x fi in Eq. (7) is replaced with the right hand side of Eq. (11) and we
have for the surface term in Eq. (7):

[ waglH xRl = [ wegico(we)T (A0)T + D] (14)
I r

Therefore, on the impedance surface the elemental matrix is:

1 ) 1
f Z_Wegl w(We)Tdr / 2WegDWndr

A
r 13 . r 1S |: :| (15)
[ = OWngj(we)Tdr [ = OwngOw,dr | L9
rZs rZs
This contribution is evaluated on all elements on the impedance surface. For a
tetrahedral mesh, the surface elements are triangles.

3 The Surface Impedance

Surface impedance boundary conditions can be developed in a numbeysf
The best known surface impedance is due to Leontovich whose sinfpedance

is no more than the wave impedance in the conductor [2,3] and since thaeis da
plane wave representation it is suitable for flat or locally flat surfacasnigr [4]
developed a second order surface impedance based on scatterirgfguating
body suitable for curved surfaces as well while still constraining theggaton

of waves in the conductor to the perpendicular direction to the surface. r& mo
general method, one that allows for, in principle, arbitrary order ssation of

the surface impedance is based on the skin depth and a power seripsiexpx

the field inside the conductor. This method, due to Rytov [5] derives tHéicdeat

of the expansion by equating terms of equal orders in and outside theiczond
tor. Although arbitrary order SIBCs can be derived, it has been slgjthat the

first three order expansion are sufficient for representation afiped configura-

tion whereas higher order become unnecessary because 3rd B &low for
tangential variations on the surface. The first term of the expansion iRyt
sequence is the Leontovich SIBC (first ordeiif, the second term is the Mitzner
SIBC (2nd order ird ), whereas the 3rd order and higher have only been derived in
the context of the Rytov approximation. A distinct advantage of this method is the
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fact that higher order terms are additive, that is, that addition of a hiyider term
does not entail any modifications to the previous terms and that the erranm us
the SIBC can be estimated from the ratio of the skin depth and the characteristic
dimension of the geometry [3, 6].

A 3rd order SIBC can be written as the relation between the electric and mag-
netic field intensities at the surface as follows [3]:

. . dy —ds_

(jwau)*%—(JwUu)*l K~ Sk
B2 =(-1%Kjw 20l HP, k=1,2
Blg = (1™ Tom df+dd3 , 192 1 92 92 ko ,

. 3

Weo ™ ez 2052 207, 225,
(16)
The notatiorb indicates the boundarg; andd, are the radii of curvatures in

two orthogonal directionséf andé,) on the surface. The negative or positive sign
in front of the expression simply indicates the relation between the comparfents
the electric and magnetic fields. The term in the outer brackets, once thatives
are performed is the surface impeda#geequired in Eq. (15). Third order SIBCs
require 2nd order derivatives and as a matter of implementation in FEMamsgr
require 2nd order elements or higher. However, 1st and 2nd or@&2sStan be

implemented with 1st order finite elements. The 2nd order surface impedance is

Oy — d3_k

20 1 |, k=1,2 a7)

. . _1 . _
Zs = jop[(jowop) 2 — (joou) ™
The 1st order surface impedance is obtained by removing the 2nd term:

jou 1+
o 0d

Zs = jop(jwop) = (18)
This is immediately recognized as the Leontovich SIBC. In Eqg. (17), the sur-

face impedance is curvature dependent. Clearly, if the radii of cuesanerequal,

the 2nd order SIBC provides identical results to the 1st order SIBCighée sur-

face is viewed as locally flat. The main advantage of this form is when theafadii

curvature in the two orthogonal directions are very different such aglindrical

geometries

4 |mplementation and Results

The implementation is straight forward and consists of the following:

1. The elements and nodes belonging to the impedance surface must be identi-
fied, usually in a pre-processor.
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2. The termsw,, Wy, andOwy, are evaluated in the normal process of assembly
although these terms are usually not available for surface elements. #yso th
need to be defined.

3. The terms of the surface elemental matrix in Eq. (15) are evaluated by the
normal process of numerical integration, again, using the triangular etemen
on the surface.

4. Solution proceeds as hormal

As a simple test case, a small coil over a conducting sheet (a classibimpro
in nondestructive testing) is calculated. The conducting sheet is 3 mm thick bu
very large in the other dimensions. Its conductivity i’ ®m and its relative
permeability 70, representing carbon steel. The coil is small, with a crosisise
of 1 mm by 1 mm, with inner radius of 3 mm and placed 1 mm above the sheet
(Figure 1). The coil is made of 50 turns carrying a unit current at 18, k

mir {mum 2T
i — -
i ;
1 |z||z|3 = ool § G
T
i mm |
)
Fmm : cotrcietor

Fig. 1. Geometry of a simple testing configuration.

In NDE, the required output is often in terms of coil impedance or induced
voltage in the coil due to variations in the test environment. In the case shown
here the flux in the coil was calculated (from which either impedance or @luc
voltage can be found). The flux with and without the SIBC are comparét, w
the surface impedance condition imposed on the upper surface of theatond
The outer boundary coincides with the lower surface of the condudberstirface
impedance was therefore applied to an interior surface, keeping the mbethin
cases identical. Normally, the conductor would be excluded from the mésélen
- that is one of the reasons for introduction of surface impedance boymrdn-
ditions - but in this case it was deemed useful to leave the mesh unchanged. T
field distribution in the vicinity of the coil, with and without the SIBC is shown
in Figure 2. Although the two figures look similar, there are subtle changegin th
field, particularly in the gap between the coil and the conductor. In pantjcitee
the SIBC is internal to the geometry modeled, one can see numerical noise in the
volume of the conductor. The fields are very low but, nevertheless céreuli.
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Fig. 2. Field distribution without SIBC (left) and with SIBC (right).

A better indication of the changes in the fields, one that is more relevant is the
change in flux in the coil due to the imposition of the SIBC. These changes are
shown in Table 1, for various conductivities. As expected, the erauldhincrease
with the decrease in conductivity since as the frequency decreasdsdntaepth
increases and hence the ratio between skin depth and the characteristisidime
of the geometry decreases. In this case the characteristic dimension is kines$isic
of the conducting sheet (3 mm). The values for flux in Table 1 are magnitudes
Table 1 also indicates the error levels one can expect due to the approxinvétio
SIBCs. This error will depend on a humber of parameters including thendista
between the coil and the surface on which the SIBC is imposed, skin degth an
mesh density.

Table 1. Flux and error in calculation of flux in the coils as a function of catidity of the plate.
Conductivity | Flux without SIBC | Flux with SIBC | % change (error)

10” S/m 9.33948 9.22142 1.28
10° S/m 9.49206 9.22142 2.93
10° S/Im 9.57937 9.22142 3.88
10* S/m 9.58843 9.221419 3.99

The results shown here do not actually benefit from the second diBiErsthce
the surface is flat and the second term in Eq. (18) is zero. Howeveufoed sur-
faces the term should make a significant difference as was shown else{#h6].
It should also be noted in passing that the convergence of the solutiopriexap
imately twice as fast even though the number of unknowns remains exactly the
same. This of course will vary from one application to the other but corisgle
the fact that SIBCs allow reduction of the number of unknowns (in somesdag
a significant ratio), one of the advantages of using SIBCs is this ovediliction
in computational effort and resources. Finally, although the presentdations is
in the frequency domain, equivalent time-domain formulations can also be imple-
mented.
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5 Conclusions

The results shown here point to the validity and value of implementing surface
impedance boundary conditions in FEM codes. Their introduction reglitiles
extra effort and incurs small errors for a significant benefit. The dhtction of
second or third order SIBC has been shown to be additive with essentiadiytra
computational effort. The effect of high curvatures remains to be et uirafuture
work as are SIBCs for other formulations such as thelmethod.

References

[1] S. A. Shelkunoff, “The impedance concept and its apfilicato problems of reflec-
tion, radiation, shielding and power absorptioBéll Syst. Tech. Jvol. 17, pp. 17-48,
1938.

[2] M. A. Leontovich, “On the approximate boundary conditiofor the electromagnetic

field on the surface of well conducting bodies,Tnvestigations of Radio WavieB. A.
Vvedensky, Ed. Moscow: Acad. of Sciences of USSR, 1948.

[3] S. Yuferev and N. IdaSurface Impedance Boundary Condition8oca Raton: CRC
Press, June 2010, iISBN 978-1-4200-4489-8.

[4] K. M. Mitzner, “An integral equation approach to scatter from a body of finite
conductivity,” Radio Sciencevol. 2, no. 12, pp. 1459-1470, 1967.

[5] S. M. Rytov, “Calcul du skin-effet par la methode des pdsations,” Journal of
Physicsvoal. II, no. 3, 1940.

[6] S. Yuferev and N. Ida, “Selection of the surface impedaboundary conditions for a
given problem,TEEE Transactions on Magneticgol. 35, no. 3, pp. 1486-1489, May
1999.

[7] Y. L. Menach, “Contribution a la modelisation numeriquilimensionnelle des sys-
temes electrotechniques,” Ph.D. dissertation, UnivedstLille 1, 1999.



