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This paper aims at detecting and characterizing inclusions in concrete structures by inverting ground-penetrating radar (GPR) data.
First, the signal is preprocessed using the principal component analysis (PCA) and then used to train an artificial neural network (ANN).
The GPR data consists of 1200 time steps. Using PCA, the data can be compressed to 286 dimensions without losing any information.
Moreover, with 99.99% of the original variance the data needs only 139 dimensions. This dimensional reduction makes the ANN training
easier and faster. The ANN were trained to find the buried inclusions characteristics— and —considering a nonhomogenous
host medium by inverting the preprocessed data. The results show that the expected maximum error was kept under 1%, which is a
remarkable result, since the host medium is nonhomogenous.

Index Terms—Artificial neural network (ANN), buried objects, ground-penetrating radar (GPR), inverse problem.

I. INTRODUCTION

AMAJOR technical problem when working with imaging
algorithms is the large variation in the inspected target sig-

nature due to environmental conditions, geometric variations,
noise, and sensors’ characteristics. Yet, image classification is
an important pursuit in diverse technical fields including mil-
itary applications, security, and safety systems, health moni-
toring biomedical engineering and many others. Therefore, this
can be considered as a multidisciplinary problem requiring con-
tributions from diverse technologies.

Notwithstanding the importance of the above-mentioned
applications, the nondestructive testing (NDT) of concrete
requires reliable measurement methods. Pulsed radars are
attractive as environment measurement methods for various
applications including the examples above. The waveform data
is obtained by scanning an omnidirectional antenna. The use of
this waveform for estimating target characteristics is known as
an ill-posed inverse problems.

In the past, various imaging or inversion techniques have been
developed to refocus the scattered signals back to their true spa-
tial location.

Most of them were based on the numerical inversion of inte-
gral equations. All these techniques are characterized by a high
level of complexity, accuracy, and a significant computational
burden. Consequently, the imaging of typical field data may be
difficult due to problems like limited coverage, noisy data, or
nonlinear relations between observed quantities and physical
parameters to be reconstructed.

Therefore, it has become necessary to use more efficient anal-
ysis for interpretation of raw-data. Such analysis require algo-
rithms by which problems having complex scattering properties
can be solved as accurately and as fast as possible. This specifi-
cation is difficult to achieve when dealing with iteratively solved
algorithms characterized by a forward solver as part of the loop,
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Fig. 1. Reflected wavefield from a buried target.

which often makes the solution process computationally pro-
hibitive for large problems. An alternative approach is the use
of model-free methods based on example data. This category is
represented by artificial neural networks (ANNs).

II. PROBLEM SETTINGS

The use of ANNs in the inverse scattering problem using par-
allel networks and networks with multiple outputs for an ho-
mogenous host medium was presented in [1] and [2]. In [2], it
is shown that both configurations could deliver reasonable and
very similar results using input parameters from the scattered
wave defined as: 1) the peak amplitude of the reflected field;
2) the delay of the first reflected echo, calculated with respect to
the time of arrival, at the receiving point, of the direct field); and
3) a measure of the duration of the scattered field (see Fig. 1).
This paper considers the case when the host media is nonho-
mogenous and, surprisingly, a network with multiple outputs
and parallel networks was not adequate to estimate the inclu-
sion geometry.

Therefore, to solve a nonhomogenous problem the parame-
ters presented in [2] are not sufficient. To overcome this diffi-
culty, we implemented an algorithm to "squeeze" the scattered
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Fig. 2. Pulse description.

Fig. 3. Problem description.

wave in order to collect more information about the scatterer it-
self using principal component analysis (PCA).

The scattered wave is obtained using finite-difference time
domain (FDTD). The problem can be summarized as the use
of an incident wave and a scattered wave to characterize the
scattering object. Usually, in real-world problems, the incident
and scattered waves are known and it is desired to identify the
scattering object.

This paper addresses a 2-D problem in which a cylinder of un-
known characteristics is buried in a nonhomogeneous dielectric.
The incident and scattered waves are simulated using FDTD to
train the ANN. The dielectric medium uses the electrical char-
acteristics of concrete [3] with a mean relative electrical permit-
tivity value of 6 and standard deviation 0.15, i.e, a nonhomoge-
nous medium. The investigation domain is illuminated by a dif-
ferentiated Gaussian pulse (Fig. 2)with a center frequencyof

MHz and bandwidth between 0.3 and 2 GHz with antennas
being simulated as dipoles (Fig. 3). In order to control the numer-
ical dispersion and provide a good discretization for the inclu-
sions, the spatial steps were chosen as mm. The
aim of this problem is, given an incident wave, , and scattered
wave, , to determine the radii and depth of the inclusion.

To train the ANN a set of different inclusion examples, say
, with different radii , depth, , and were generated.

The ANN has been trained with a set of different inclusions
examples, constructed by varying the radii in the range [0.02

0.1] m according to the rule ,
, with in the range [1 10], according to the

rule , , in the range [0 4000]
according to the rule ,

and depth in the range [0.05 0.25] m, according to the rule
, making a total of 1640

examples.
The is the only information available in the real cases,

therefore, it has to be used to characterize the inclusion. In
this paper, 1200 time steps were considered; thus, a problem
in must be solved. The ANNs suffer of a phenomenon
called the curse of dimensionality, i.e., the learning process
becomes slower and less effective. In the next section, the curse
of dimensionality will be addressed followed by the principal
component analysis (PCA). The latter is an effective way to
reduce the dimensionality of this problem.

III. CURSE OF DIMENSIONALITY

One phenomenon that takes place in high-dimensional data is
the sparsity of the sample points [4]. Given a data set with
data points uniformly distributed in a -dimensional unit sphere
centered at the origin, the median distance given from the origin
to the closest sample is given by

(1)

In a sample size of 1640 and 1200 dimensions,
, which means that the samples are closer to the

boundary of the space than to any other data point. For an
ANFIS topology, the number of rules for a system with
inputs and premises is ; hence, it increases exponen-
tially with the dimension , what makes the learning slow [5].
The following section presents the PCA, which will be used for
dimensional reduction.

IV. PRINCIPAL COMPONENT ANALYSIS

In some situations, the dimension of the input vector is large,
but the components of the vectors are highly correlated (redun-
dant). PCA is a way of identifying patterns in data, and ex-
pressing the data in such a way as to highlight their similarities
and differences. The main advantage of PCA is that once these
patterns in the data are found, the data can be compressed, i.e.,
by reducing the number of dimensions, without much loss of in-
formation. This technique is most used in image compression.

This technique has three effects: it orthogonalizes the com-
ponents of the input vectors (so that they are uncorrelated with
each other), it orders the resulting orthogonal components (prin-
cipal components) so that those with the largest variation come
first, and it eliminates those components that contribute the least
to the variation in the data set.

The input vectors are first normalized so that they have zero
mean and unity variance. For PCA to work properly, one has to
subtract the mean from each of the data dimensions.

The PCA uses a linear mapping of a given set of samples
to construct a new data set

, where .
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Another interpretation of the PCA is the construction of di-
rections that maximize the variance. The transformation gen-
erates a projection space in which the covariance matrix is diag-
onal. The diagonal covariance matrix implies that the variance
of a variable with itself is maximized and it is minimized with
respect to any other variable. Thus, the variables with higher
variance in the new space should be kept. The principal com-
ponents of a set of data in provide a sequence of best linear
approximations to that data, of all ranks .

The problem considered is initially in but it can be pro-
jected in a without any loss of information, i.e., 100% of
the data variance was kept. Considering 99.99% of the variance,
the variables can be projected in and in when 99% of
the original variance is kept. These are remarkable reductions
that help in reducing the curse of dimensionality.

V. EXPECTED ERROR

The model structure problem is given by choosing among a
set of possible functions , ,1 the possible parallel
layer perceptron (PLP) in the present case, the one that opti-
mizes a given quality criterion. Mathematically

(2)

where 2 is a predefined quality criterion, and is the ar-
gument that minimizes (2). To apply the model structure selec-
tion, it is required to define the best approximation of the desired
output ; therefore, a measure of discrepancy between the
desired and obtained outputs should be employed. The expected
risk (error) between the desired and the approximate outputs can
be expressed [6] as

(3)

The expected risk measures the expected test error for
the neural network, i.e., the ANN performance. The aim of the
machine learning problem is to find , , that mini-
mizes the risk functional presented in (3). The integral cannot be
directly evaluated since the distribution is unknown and
the only available information is the training set. The training set
consists of random vectors , , inde-
pendently and identically distributed (i.i.d) according to some
unknown but fixed probability distribution . The training
set can be written as

(4)

The risk defined in (3) can be asymptotically approxi-
mated, given some consistence conditions [6], when the number
of training set samples tends to infinity. Of course, such an
infinite size set is not available. To overcome this problem, re-
sampling techniques can be used to approximated the expected
risk.

The simplest resampling technique is the hold out (HO), also
called external validation or validation. It consists of removing

1In the PLP case � is the set of real numbers but, in general, it can be a set of
scalar quatities, a set of vectors, or even a set of abstract elements [6].

2The risk R(w) = L(d; f(x; w))dF (x; d) can be written using the joint
probability of x and d p(x; d), R(w) = L(d; f(x; w))p(x; d)dxdd.

Fig. 4. Threefold cross-validation. The two sets labeled as train are used to
train the neural network and the error is evaluated on the test set. After all the
folders are used once as a test set, the expected risk is estimated as the average
error of the sets.

TABLE I
RESULTS OF THE RELATIVE ERROR CONSIDERING THE depth PREDICTION

TABLE II
RESULTS OF THE RELATIVE ERROR CONSIDERING THE radii PREDICTION

samples from the initial learning set, and using them for vali-
dation. Many previous works used this idea of dividing the set
in training and test sets. In this paper, we employed the -fold
cross-validation. For -fold cross-validation, the training data
is divided into sets of approximately the same size, in such a
way that the learning takes place in sets and the model
is independently validated in the remaining set. This indepen-
dence in the validation process avoids the inverse crime of using
the same structure in the validation process. This is performed

times using all the folds as validation set once. Fig. 4 shows
a threefold cross-validation. The estimate of a given parameter
when resampling techniques are used is the mean of the statis-
tics evaluated on each model over the corresponding test data.
The -fold cross-validation uses the data set more effectively
and is employed in this work to evaluate the expected risk.

VI. RESULTS

To evaluate the performance of the techniques studied here
the following error (loss) figure is used:

(5)

where is the unknown variable (depth or radii ), the subscript
indicates the real value of the variable, and subscript indi-

cates the value reconstructed by the neural network. This mea-
sures the percentage deviation of the reconstructed object to the
real one (desired object). The expected value of the test risk, (3),
given the loss functional defined in (5) was calculated using the
tenfold cross-validation. Tables I and II show the mean devia-
tion , the maximum deviation and the train
and test times considering the dimension reduction to ,
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Fig. 5. Overview of the detection system employed in this paper. First, given
a set S of radii (ra), depth (de), � , and �, a scattered wave (W 2 ) is
calculated using FDTD. Afterwards, given q < p a dimensional reduction is
applied in W generating W 2 . Next, the W is used in a k-fold
system such thatS is used to estimate the expected error (3), andS are used
to adapt the PLP network parameters. In this paper, a tenfold cross-validation
was employed.

TABLE III
TABLE RESULTS CONSIDERING THE TWO CONFIGURATIONS

OF THE NEURAL NETWORKS STUDIED IN [2]

139 and 286. The system developed in this paper using a PLP
network trained with the scattered wave calculated with dimen-
sional reduction based on PCA is presented in Fig. 5.

The results of Tables I and II show that the proposed system,
which combines a PCA preprocessor with a PLP is a very
promising idea for assessment of inclusions in nonhomogenous
concrete structures.

Retaining only 286 of the initial 1200 points, the information
is still represented without any loss; thus, 100% of the data vari-
ance was kept. The reduction to 139 and 51 dimensions resulted
in 99.99% and 99% of the original variance, respectively. It is
clear from the results that it is harder to predict the radii than
the depth . This can be physically understood by the fact that the
antenna position is in front of the objects.

The nonhomogeneous problem was also solved using the ap-
proach in [2]. The two different configurations proposed to solve
this inverse problem were a network with multiple outputs, and
independent networks in parallel. The network with multiple
outputs, called here , calculates simultaneously the depth

and radii given as , and . The parallel networks, called
here , calculate independently each output given the mea-
sured variables , and . In in which the depth is cal-
culated using , , and , and the radii are calculated in a
second step (asynchronously) using also the calculated depth.

As all the techniques apply a similar mechanism to recon-
struct the depth their error are also very similar, as indicated in
the second column of Table III. It can be seen in Table III that a
significant error occurs when applying this technique to a non-
homogeneous problem. These results supports the initiative of
using a PLP network trained with the scattered wave calculated
with dimensional reduction based on PCA.

Dimensional reduction was also considered in [2] but was
done empirically using only three features, the peak amplitude
of the reflected field; the delay of the first reflected echo, calcu-
lated with respect to the time of arrival (at the receiving point)
of the direct field and a measure of the duration of the scattered
field were considered. The error average of the best configura-
tion presented in [2] was 1.46% for the depth reconstruction that
is higher than the result presented in this paper.

VII. CONCLUSION

This paper presented a novel approach of inclusion character-
ization in nonhomogenous concrete structures using ANN and
PCA. The PCA was used to preprocess the training data aiming
at dimensional reduction and, without losing any information, it
was possible to represent the initial scattered wave
in a new one such that . This compressed wave
was used to train a PLP and a low expected error was obtained
with a reasonable training time.

The general system presented in Fig. 5 has proven to be ef-
fective for this type of problems and can be extended to many
other GPR problems. Compared with the previous work, this
paper considers the nonhomogeneity of the medium using, thus,
a more realistic model. The main advantage of ANNs compared
with stochastic optimization approaches is a lower computa-
tional effort for the evaluation process [7]. As it is well known,
stochastic methods tend to be slow even though robust. The au-
thors of this paper believe that the combination of both tech-
niques must be investigated trying to extract the strengths of
each one [8].
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