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Implementation of High-Order On-Surface
Radiation Boundary Conditions
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Electromagnetic scattering problems that involve far-field radiation patterns and the calculation of total currents induced in a perfect
conductor can be solved using local radiation boundary conditions. These local conditions are often imposed on a domain enclosing the
scatterer, and the typical finite-element methods are incorporated so that the well-posedness of the modified problems encompassing
the local radiation boundary conditions is preserved. Much effort in recent years has been devoted to attempts to construct
higher order far-field conditions, so that the solution accuracy can be improved. In this article, we avoid extensive computations and
bring the radiation boundary on the scatter’s surface itself. This procedure is known as the on-surface radiation boundary condition
(OSRBC). The limitations in the past have been the implementable order of the OSRBC. Nevertheless, the key feature of the OSRBC
to calculate the relevant quantities for engineers is the normal derivative of the solution on the OSRBC. This article introduces a new
method for calculating the normal derivative of the electric field on the surface of a scatterer of the known shape. The method is based
on a formulation of the boundary conditions through a recursive sequence of differential operators. The numerical implementation
of this formulation allows one to extract a relation which is then used to solve for the quantity of interest, such as radar cross
section.

Index Terms— Boundary conditions, scattering, on-surface radiation boundary condition (OSRBC).

I. INTRODUCTION

ELECTROMAGNETIC scattering problems are most often
too difficult to solve analytically and usually call for

numerical and/or asymptotic methods. Computational electro-
magnetics, particularly applied to radar cross sections, often
involves complex and time-consuming numerical algorithms
(typically finite-element computation). These algorithms have
an accuracy that relies on the choice of certain parameters
(e.g., the elements) and on an accurate prescription of far-
field conditions. For better computational performance, it is
useful to truncate the computational domain with an artificial
boundary. Bayliss and Turkel [1] constructed a sequence of
radiating boundary conditions and proved the convergence of
the solution toward the infinite domain solution as the bound-
ary is moved far from the scatterer. Kriegsmann et al. [7] have
shown that it is possible to bring the radiation boundary on
the scatterer boundary � and still calculate the radar cross
section. The advantage of this approach is that the domain
of integration is reduced to the contour of the scatterer.
Specifically, this principle involves calculation of the normal
derivative on �. The principle is referred to as on-surface radi-
ation boundary condition (OSRBC). Unfortunately, the closer
one brings the radiation boundary to the scatterer, the more
accurate the prescription of the radiation condition must
be. Kriegsmann et al. [7] used either first- or second-order
radiation conditions. In addition, their work was limited to
frequency domain problems because the OSRBCs were based
on high-frequency operators (either global as in [1] or local
in [7]). To address problems at low-frequencies, which arise in
some applications such as non-destructive testing, or to study
transients of physical systems, one needs to develop other
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Fig. 1. Geometry of the problem.

tools. In this article, we present arbitrary order OSRBCs in
the time domain, from which one can obtain the frequency
domain results as well.

The original formulation of on-surface radiation conditions
that we use appeared in [5]. This formulation relies on the
theoretical formulation of the scattered field solution presented
in [2]–[4]. Hariharan et al. [6] presented an implementation
of this formulation. We propose to continue this article by
extending it with an implementation of higher order OSRBCs.
Implementation of these time-domain conditions to a higher
order should yield improved accuracy.

The problem considered here is an exterior Dirichlet prob-
lem for a wave external to a region � (the scatterer) bounded
by a boundary of arbitrary shape �. The problem is illustrated
in Fig. 1. The situation is governed by the wave equation

∇2u − με
∂2u

∂ t2 = 0 (1)

where u is the field. Boundary conditions needed to solve
the problem are demonstrated in [5] and take the form of a
recursively defined sequence of equations. They are expressed
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in polar coordinates as follows:
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+ ω j+1 ∀ j ∈ N∗ (3)

where the functions ω j are auxiliary functions defined recur-
sively called remainders, ω0 = 2u and c2 = με. For ω1 = 0,
the condition is known as the Baylis and Turkel condition.
Higher order implementations are introduced here.

II. PROPOSED METHOD

It has been shown in [5] that ω j = Or→�(r1/2−2 j ). For
each integer j , the function ω j is called the remainder of
order j . As the value of a remainder on the boundary �
decreases when its order increases (for values of r on � greater
than 1, i.e., for � enclosing the unit circle), it is natural to set
some order p that one can choose according to the desired
accuracy, beyond which the remainder can be neglected. From
this approximation, (3) can be solved backward in j to find
ω1 in terms of u, and then (2) provides the radial derivative
∂u/∂r . The radial derivative can then be used to calculate
∂u/∂n

∇ × n =
�

∂/∂r
(1/r)∂/∂θ

�
×

�
n1
n2

�
= n1

∂

∂r
+ n2

1

r

∂

∂θ
.

The process of finding ∂u/∂r using the conditions (2) and (3)
is the contribution of this article.

III. IMPLEMENTATION OF THE METHOD

For each and every j , we have: ω j = Or→�

�
r1/2−2 j

�
, and

we may assume that beyond some given index (fixed arbitrarily
depending on the desired accuracy), the remainder becomes
so small that it can be assumed to be 0. Denoting ωp the last
non-zero remainder, that is, all remainders ω j with j > p are
neglected and assumed to be zero. Next, we discretize (3) and
write this in the form

−1

2cdt
ω

j
n,k−1 + j

r
ω

j
n,k + 1

2cdt
ω

j
n,k+1 − ω

j+1
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= 1
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j−1
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(4)

where⎧⎪⎪⎪⎨
⎪⎪⎪⎩

dθ = 2ι
N−1 , where N is an integer

dt = tfinal
K−1 , where K is an integer

ω
j
n,k =ω j (r, ndθ, kdt), where






 k ∈{0, 1, 2, . . . , K − 1}
n ∈{0, 2, . . . , N − 1} .

To find a simple relation between the remainders ω j in (4),
we introduce the notation: ω

j
n,k = ω j (r, ndθ, kdt), and define

Z j =[ω j
1,1, ω

j
1,2, . . . , ω

j
1,K , ω

j
2,1, . . . , ω

j
2,K , . . . , ω

j
N,K ]T. (5)

As a consequence, (4) becomes

M j Z j−1 = Tj Z j − Z j+1

where M j and Tj are NK×NK matrices given by

M j =

⎛
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where A j , B , and C j are three K × K matrices defined by

A j = −2 + ( j − 1/2)2dθ2

4r2dθ2 IK (8)
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We have chosen p such that Z j = 0 for j > p and, in
particular, �

Z j−1 = M−1
j Tj Z j − M−1

j Z j+1

Z p−1 = M−1
p Tp Z p.

It is useful to write

Z p = Pp Z p and Z p−1 = Pp−1 Z p

where matrices Pp and Pp−1 are given by

Pp = IN K and Pp−1 = M−1
p Tp.

It can be proven that a similar relation holds for all orders.
For example, one needs to show that for m ≤ p, there exist
Pm ’s such that Zm = Pm Z p. To do so, we first assume this
to be true for some integer m < p and all orders from m to p
(it is true for m = p− 1 as shown previously). Then

Zm−1 = M−1
m TmZm −M−1

m Zm+1 =M−1
m TmPmZ p −M−1

m Pm+1Z
p

= (M−1
m Tm Pm − M−1

m Pm+1)� �� �
Pm−1

Z p.

By induction, for any integer m ∈ {1, 2, . . . , p}
Zm = Pm Z p. (11)

In particular, �
Z1 = P1 Z p

Z0 = P0 Z p.
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A recursive definition of the matrices Pm ’s has been estab-
lished, allowing their calculation⎧⎪⎪⎨
⎪⎪⎩

Pp = IN K

Pp−1 = M−1
p Tp

Pm−1 = M−1
m (Tm Pm − Pm−1), m ∈ {2, . . . , p − 1}.

P0 and P1 are of interest here since these are the quantities
needed to calculate ∂u/∂r |r∈� .

Using the notation

un,k = u(r ∈ �, ndθ, kdt), vn,k = ∂u/∂r(r ∈ �, ndθ, kdt)

two vectors U and V are defined as

U = [u1,1, u1,2, . . . , u1,K , u2,1, . . . , u2,K , . . . , uN,K ]T

V = [v1,1, v1,2, . . . , v1,K , v2,1, . . . , v2,K , . . . , vN,K ]T.

The goal is to determine V . The discretization of (2) becomes

1

c
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2dt
+ vn,k + 1

2r
un,k = ω1

n,k . (12)

Using a matrix formulation, this is written as

1

2cdt
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2r
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where S is an (N × K ) × (N × K ) matrix given by
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(aK × K matrix).

The result (11) is inverted and substituted into the following:

Z0 = 2U = P0 Z p ⇒ Z p = 2P−1
0 U.

This yields an expression of the radial derivative that can be
used for computation of vector V

V =
�

2P1 P−1
0 − 1

2r
IN K − 1

2cdt
S

�
U.

Fig. 2. du/dn(R, 0, t) with respect to t (for tfinal = 5).

IV. RESULTS

The method has been implemented for a circular scatterer
and for the incident field

uinc = Re{e−iωt eβr cos θ }
where β has been taken to be 5. The exact solution used
for comparison and verification was calculated using potential
theory [8]–[10] but its details are not given here because it is
lengthy. The solution generated by the method introduced in
this article and the exact solution are shown in Fig. 2 for two
given time intervals.

The results are practically indistinguishable from the exact
solution, thereby validating the method. Although it is not
possible to see that in the figure, the first and last point in
the plot diverges from the exact solution. This is because a
leap-frog scheme was used for the time derivative to improve
accuracy. The exact solution used for comparison is limited to
simple geometries (in the case shown in Fig. 2 for a cylindrical
boundary). More complex boundaries can also be evaluated
and compared with experimental data such as may be obtained
from radar cross-section measurements. The analytical solu-
tion to more complex geometries is not usually possible (with
the exception, perhaps, of elliptical cross-sectional scatterers),
and therefore, comparison can only be done with experimental
data. However, for the validation of the method, which is
the purpose of the result given here, an analytic solution is
preferable and the results have shown, while limited in scope,
to verify the method.

V. CONCLUSION

We have demonstrated that the calculation of the radial
derivative is possible without the use of sophisticated and
expensive numerical algorithms. A simple finite difference
scheme allowed the calculation of the radial derivative to any
desired accuracy. This has been achieved by exploiting an
OSRBC formulation available in the literature. The method
has been validated on the example of a circular scatterer
illuminated by a plane wave. Scatterers of different shapes
may be used as long as a polar description of their boundaries
is available. Different incident fields may also be used. In
addition, the use of the Laplace transform (in time) reduces
drastically the size of the systems to manipulate and therefore
improves the computational time.
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However, the cost is an additional numerical error due to the
Laplace transformation and inversion. Thus, one must decide if
higher accuracy is more important or if shorter computational
time is needed.
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