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Abstract

The Transmission Line Matrix ( TLM ) is a physical discretization approach used to solve the wave 
equation numerically. The method replaces a continuous system by a network or an array of lumped 
elements. The TLM method involves dividing the solution region into a rectangular mesh of the 
transmission line segments. The nodes of the mesh are the points of discontinuity for acoustic impedances.

A computer program based on transmission-line matrix (TLM) model was developed to simulate the 
ultrasound propagation media with different acoustic impedances. The numerical model provides both 
frequency and time domain responses. The influence of variations in the shape of the incident pulse is 
discussed. The numerical results are compared with those obtained from experiments.

Introduction

To improve the results obtained in ultrasonic NDT , considerable theoretical effort is involved in 
developing reliable mathematical models of wave propagation in different media. Due to the complexity 
of the problems, numerical methods have proven to be an appropriate approach. Among other 
numerical methods applied in the time domain, the TLM was found to be suitable for complex geometries 
and various types of input signals. These advantages make this method a suitable method for ultrasonic 
NDT.

The transmission line method was proposed by Johns (1). The method is a direct numerical
implementation of the Huygens principle (2). The wave front at each iteration (instant in time) for a certain 
point is a result made of the waveforms generated at a neighbouring point in the previous iteration. The 
TLM is a physical discretization approach and this method does not require the solution of the 
differential equation. A continuous system is replaced by a network or an array of lumped elements. The 
TLM requires division of the solution region into a rectangular mesh of the transmission lines. The nodes 
of the mesh are points of discontinuity for impedances.

To solve a problem using the TLM, a set of boundary conditions and material constituents must be 
provided. An initial excitation must also be given. Then the impulses are propagated throughout the mesh 
using scattering theory on transmission lines. There is no limitation regarding the frequency of interest, but 
the size of the mesh imposes an upper limit on the frequency response analysis.

Model Description
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Considering Kirchhoff’s laws for a shunt transmission the wave equation for the voltage can be written 
(3):

TLM algorithm

(1)

Assuming that the transmission line is lossless and nondispersive. The elements of the circuit (L and C) 
are chosen to model the propagation in a homogenous infinite space with acoustic impedance  :By 
combining the continuity equation and the equation of motion for a medium with a uniform density  and 
compressibility , the acoustic wave equation written for pressure  has the form (4):

Zm
ρ

κ p

(2)

Equations (1) and (2) show that the following equivalencies can be enforced:

(3)

The equivalencies between the current components ( , ) and velocity components (  and ) can be 
determined in the same way. Based on the equivalence between the wave equation written for acoustic 
waves and the wave equation for an ideal transmission line, the scattering matrix theory (SMT) is applied 
to study the equivalent microwave network system as seen at its ports. The SMT determines the output 
at all ports for a given input. In a general form this can be written as:

Ix Iy ux uy

(4)

where [ ]  and [ ]  are matrices of reflected and incident pulses, respectively. The scattering parameters
 are determined by considering that a signal is injected at port “i” (  0 ) whereas at the rest of the 

ports the signal is zero – they are match-terminated (  = for ). Since the system is equivalenced 
with a microwave network, the scattering matrix elements become the voltage reflection and transmission 
coefficients, respectively. The voltage reflected at any port “s" at time ( )  will be (2):

p r p i

Sji Pi
i 1

Pi
j 0 i1j

k+1 t∆

(5)

The positive integer variable k is the number of iterations and represents the number of time steps t that 
have passed since the beginning of the computation.

∆

The presence of a medium  is modelled in two ways. The first method is modelled by modifying the 
reflection coefficients at the boundary between the two media. The second way to model the presence of 
different media in a TLM mesh is to modify the scattering matrix. The discontinuity in impedances that 
exists at the interface between two media is modelled by incorporating an open circuit stub of length /2 

l

l∆
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(5). This implies introducing a supplementary leg that will match impedances of two different layers. For 
this case equation (5) becomes:

(6)

The pressure at node (i,j) at iteration k is found as:

(7)

Equation (7) shows that the method discussed above is equivalent to the finite difference time domain 
(FD-TD) method with respect to the final result, but the TLM does not require explicitly finding the 
solution for the wave equation (2). The equivalence between admittances and  and media 
compressibilities  and  is expressed by(6):

Yl Yo
κm κo

(8)

Attenuation of the ultrasonic pulse in medium  is modelled by assuming that the losses are distributed 
continuously. Therefore the amplitude of the reflected wave is attenuated by the attenuation factor
along the mesh lines. This was implemented in the TLM code using the relation:

l
α

(9)

Wave propagation is modelled by the so called connection process. In this process, the reflected pulse 
for a certain node at time becomes the incident pulse for neighbouring nodes at the same time

.
(k+1) t∆

(k+1) t∆

Excitations

Equations (6) - (9) describe the wave propagation at any coordinate (x,y) at any instant . To initiate 
the process an input energy needs to be provided. This energy is called excitation. Due to the equivalence 
with a microwave network the initial conditions of the problem are modelled by voltage sources that can 
be placed at any node. A TLM structure can be excited at any location with practically any kind of 
excitation. The physical problem determines the locations and the type of excitation. It is possible for a 
continuous waveform to be excited at appropriate input nodes. This excitation is implemented by
keeping, for all iterations, the voltages for input points at pre-set values. When the characteristics of a 
structure have to be investigated over a wide frequency range a single localised pulse is used. Initially, 
the voltage amplitudes at all nodes are set to zero except at the selected input point. An impulse is then 
applied there. The minimum time interval for a pulse is where  is the phase velocity in the mesh. To 

minimise the effect of dispersion the minimum distance between the nodes, , is related to the smallest 
wavelength  of interest by the following relationship (7):

k t∆

v

l∆
λmin
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(10)

For the purpose of the present discussion a sinusoidal Gauss-modulated pulse is considered:

(11)

Frequency response

The output impulse function at a particular point is obtained by summing the total node voltage at  for all 
iteration. Mathematically this is written as a sum over the total number of iterations :

k
Nit

(12)

Similarly, the excitation function can be written as:

(13)

For example, for a sinusoidal excitation at frequency , such as that given in equation (11), the coefficients 
 at iteration  are:

f
a(i,j) k

(14)

The frequency response,  = , is obtained as the Fourier Transform of the time response 
function given by equation. (14):

H ( j )ω H ( j2 f)π

(15)

Results

The concepts of the TLM algorithm presented in previous section are demonstrated in figure 1. A 
Gaussian pulse was launched in a 101 by 101 mesh modelling free space. The interaction of this wave 
with a perfect reflecting square is shown for two iterations. The first iteration is when the wave front 
touches the square ( iteration 39). The second iteration was chosen when the wave front reaches the 
boundary of mesh ( iteration 60).
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Fig 1: The simulated waveforms for a Gaussian pulse 
propagating in 101x 101 mesh, containning a perfect 

reflecting square. Two instances are shown: a) iteration
39 ( when the waveform touches the corner placed in 

position (70,70); b) iteration 60.

The ultrasonic images for this work were obtained in two different experimental arrangements in the 
same structure (8) : a data acquisition board with a high sampling rate : 80 MHz (128 MHz ) maximum 
amplitude of 400V and 9ns rise time; a mechanical system based on a computer controlled stepper 
motor allowing achievement of  0.05mm resolution.±

A multilayered structure made of two plastic sheets ( 0.5mm thickness) with a water gap between them 
was investigated. The ultrasonic image of the structure is shown in figure 2. The same experiment was 
reproduced numerically. A sinusoidal Gaussian pulse was injected in the TLM mesh according to 
equation (11). The parameters that were used to generate this pulse are: = 400V;  = 6.7;  = 0.3 s;
 =3.5MHz.

A σ to µ
f

Fig 2: The ultrasonic image of the water-plastic-water-plastic-
water structure investigated.
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The comparaison between the numerically generated signal ( continue line) and the reflected pulse 
(dashed line) obtained from structure under investigation is shown in figure 3. As shown in figure 3 TLM 
model reproduced the real pulse all boundaries have been solved corectly.

Fig 3: TLM reflected pulse from a multilayer structure: water-plastic-
water- plastic-water.

A metallic multilayer bearing containing a disbound was considered next. This structure is made of a steel 
base and an antifriction layer ( 6 mm thickness) . The ultrasonic image was obtained in immersion using 
and emitter-receiver transducer ( 5MHz). The TLM model consisted of a 1000 by 1000 mesh in which 
a Gaussian pulse with the following parameters was used for excitation: = 400V;  = 7.7;  = 0.2 s;
 =5MHz. The sampling frequency for this simulation was 128 MHz. A comparison between the 

frequency response obtained for the real case and TLM case is shown in figure 4. The main frequency 
components have been correctly identified.

A σ to µ
f
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Fig 4: Comaparison between frequency response obtained from experiment 
and the numerically generated response. The structure under investigation 

was a metallic multilayer bearing containing a disbound.

Conclusion

A numerical model for ultrasonic wave propagation in layered media is proposed. The model is based on 
the TLM algorithm. The model proposed was implemented in a FORTRAN program. The results shown 
in this paper demonstrate that the model can be applied to characterisation of the flaw in multilayered 
structure. Samples with different acoustic impedance profiles have been investigated. Comparison 
between numerically generated signals and real ultrasonic signals validate the proposed model.
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