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Abstract

Purpose – To provide a time domain formulation for reconstruction of transient currents flowing in
massive parallel conductors from magnetic data collected in the dielectric space surrounding the
conductors.

Design/methodology/approach – A boundary integral equation (BIE) formulation involving
Mitzner’s and Rytov’s high order surface impedance boundary conditions (SIBCs) is used. Input data
of the inverse problem are the magnetic fields at given locations near the conductors. In order to
validate the inversion algorithm, the magnetic field data are computed solving the direct problem with
FEM for given current waveforms.

Findings – The improvement in reconstruction accuracy of the new time domain BIE formulation
employing high order SIBCs has been demonstrated numerically in a simple test case. The range of
validity of the technique has been extended to current pulses of longer duration and the computational
burden has shown to increase only by a factor of 4.

Research limitations/implications – The proposed formulation can be compared with other
possible formulations, both in the time and in the frequency domain.

Practical implications – Based on this formulation a new current sensing technique is proposed for
realization of low cost current sensors based on magnetic sensor arrays.

Originality/value – The inverse problem addressed in the paper has been solved for the first time.
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Paper type Research paper

Introduction
The inverse problem of reconstructing currents flowing in parallel conductors from
magnetic field data around them arises in the design of innovative current sensors for
protection systems (D’Antona et al., 2001). Since these types of problems feature low
electromagnetic penetration depth in the conductors, a natural approach in this case is to
eliminate the conducting region from the numerical procedure by using surface impedance
boundary conditions (SIBCs) at the conductor/dielectric interface (Godzinski, 1961).

The numerical method best suited for use with the SIBC is the boundary integral
equation method (BIE) because in BIE and SIBC the functions are approximated at
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the same points on the interface between the media. Being applied to an eddy current
problem consisting of conducting and non-conducting regions, the BIE yields a system
of two integral equations over the conductor’s surface with respect to two unknowns:
the required function (for example, magnetic scalar or vector potentials) and its normal
derivative at the conductor/dielectric interface (Brebbia, 1980).

Use of the SIBC allows elimination of the extra unknown and reduces the
formulation to only one integral equation employing the fundamental solution of the
Laplace equation. Usually, the surface integral equations are derived in such a way
that the total currents flowing in the conductors are on the right-hand side so they are
considered as known quantities (Barmada et al., 2004). This is certainly true in direct
problems, but in inverse problems the known (measured) value is the magnetic field at
the location of the sensors whereas the goal is to calculate the total currents in the
conductors. As a result, the surface integral equation should be supplemented by an
equation relating the total currents flowing in the conductors and the field values
measured by sensors outside the conductors. Di Rienzo et al. (2003) have developed an
iterative procedure to solve both equations and analyzed its convergence.

Note that the BIE-SIBC formulation proposed by Di Rienzo et al. (2003) employs the
time domain version of the classical Leontovich SIBC based on the assumption that the
field penetrates only in the direction normal to the conductor surface. Rytov (1940) has
demonstrated that the use of the Leontovich’s SIBC leads to an approximation error of
the order of magnitude of O(d 2/D 2) where d is the skin depth and D is the
characteristic size of the conductor’s surface. It practically means that the method
developed by Di Rienzo et al. (2003) is applicable only if the skin depth is very thin.

Limits of applicability of the inverse BIE-SIBC formulation can be extended using
the improved Mitzner (1967) and Rytov (1940) SIBCs allowing for such high order
effects as curvature of the conductor surface and diffusion in directions tangential to
the surface. Approximation errors due to use of Mitzner’s and Rytov’s SIBCs are
O(d 3/D 3) and O(d 4/D 4), respectively (Yuferev and Ida, 1998). Boundary element
formulations based on the SIBCs of high order of approximation have been developed
for direct problems using the perturbation technique (Yuferev et al., 2000). In the
present paper the high order time domain SIBCs are implemented in the formulation
developed by Di Rienzo et al. (2003) to improve the reconstruction accuracy and extend
the application area of BIE-SIBC formulations of inverse problems. Special attention is
paid to details of implementation of the iterative procedure which is main difference
between inverse and direct BIE-SIBC formulations.

Statement of the problem
N parallel conductors carrying time-varying transient currents Ii(t), i ¼ 1; 2; . . . ;N ;
and M sensors located in the dielectric space surrounding the conductors are
considered. The transients are so fast that the electromagnetic field has no time to
penetrate deep into the conductor so that its penetration depth is shallow. This
physical statement can be described mathematically as follows:

d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t=ðsmÞ

p
! D ð1Þ

where d denotes the skin depth; D, the characteristic size of the conductor cross section;
t, the duration of the current pulse; and s and m are the electrical conductivity and
magnetic permeability of the conductor material, respectively.
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An output voltage signal supplied by the magnetic sensor can be expressed in the
form:

VkðtÞ ¼ Sk ~sk · ~H ~r
sens
k ; t

� �� �
; k ¼ 1; . . .;M ð2Þ

In the inverse problem the quantities Vk, Sk and ~sk are considered to be known
(measured) and the currents Ii(t) need to be determined.

Surface impedance boundary conditions
The SIBCs are naturally represented in terms of a local quasi-spherical orthogonal
curvilinear coordinate system related to the conductor’s surface. Let coordinates j1 and
j2 be directed along the surface and coordinate h be directed into the conductor normal
to its surface so that the unit vectors ~e1; ~e2; ~n of the local coordinate system are related
as follows:

~e1 £ ~e2 ¼ ~n ð3Þ

The local radii of curvature corresponding to coordinate lines jk are denoted as dk,
k ¼ 1; 2:

With the local coordinates the SIBC can be represented in the following general form
(Yuferev and Ida, 1998):

~n £ ~E ¼ m
›

›t
~F ð4Þ

where vector ~F describes the perturbation of the electromagnetic field in the free space
surrounding the conductor due to the field diffusion inside the conductor and the
energy dissipation. The components of vector ~F may take different forms depending on
the approximation of the equation used to describe the field diffusion into the
conductor:

ð~FPECÞjk ¼ 0 ð5aÞ

ð~FLeontovichÞjk ¼ T1*H jk ð5bÞ

ð~FMitznerÞjk ¼ T1*H jk 2 T2* d21
k 2 d21

32k

� �
H jk

h i
ð5cÞ

ð~FRytovÞjk ¼T1*H jk 2 T2* d21
k 2 d21

32k

� �
H jk

h i

þ T3*
3d2

32k 2 d2
k 2 2dkd32k

8d2
kd

2
32k

H jk

" #

þ T3*
1

2
2

›2H jk

›j2
32k

þ
›2H jk

›j2
k

þ 2
›2H j32k

›jk›j32k

 !" #
ð5dÞ
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where * denotes time-convolution products and the time-dependent functions T1, T2,
T3 are written in the form:

T1 ¼ ðpsmÞ21=2t21=2; T2 ¼ U=ðsmÞ; T3 ¼ 2ðps 3m 3Þ21=2t 1=2 ð6Þ

Here U(t) is the unit step function.
In the particular case of the perfect electrical conductor (PEC) the field does not

penetrate into the conductor and the skin depth is zero as well as the right hand side of
equation (4). In the Leontovich approximation the body’s surface is considered as a
plane and the field is assumed to be penetrating into the body only in the direction
normal to the body’s surface. High order effects of the curvature of the conductor
surface and the diffusion in the direction tangential to the surface are taken into
account in the Rytov approximation.

BIE-SIBC formulation
The electromagnetic field distribution in the conductors and surrounding free space
can be described by Maxwell’s equations in the quasi-static approximation:

Non-conducting space:

7 £ ~H ¼ 0 ð7aÞ

7 £ ~E ¼ 2m0› ~H=›t ð7bÞ

Conducting region:

7 £ ~H ¼ s~E ð8aÞ

7 £ ~E ¼ 2m› ~H=›t ð8bÞ

Here m0 is the magnetic permeability of the free space.
Let us introduce the magnetic scalar potential in free space as follows (Mayergoyz,

1983):

~H ¼ ~Hfil 2 7f ð9Þ

~Hfil ¼
XN
i¼1

ð ~HfilÞi ¼
1

4p

XN
i¼1

Z
Li

~Iið~r
0; tÞ £

~r2 ~r0

j~r2 ~r 0j
dl ð10Þ

Here ~Hfil is the magnetic field created by the currents Ii, i ¼ 1; 2; . . . ;N ; flowing
through an imagined filament located inside every conductor (Mayergoyz, 1983).
Substitution of equations (9) and (10) in equation (2) yield:

VkðtÞ ¼
XN
i¼1

SkakiI iðtÞ2 Sk~sk ·7f ~r
sens
k ; t

� �
; k ¼ 1. . .;M ð11Þ
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where aki is a coefficient depending only on the relative position of the kth sensor and
the ith filamentary current and Sk are the sensitivities of the magnetic sensors
(Di Rienzo et al., 2003).

Substitution of equation (9) into equation (7a) yields the Laplace equation governing
the scalar potential distribution in free space:

Df ¼ 0 ð12Þ

Application of the BIE method transforms equation (12) into the following surface
integral equation (Brebbia, 1980):

1

2
fþ

XN
i¼1

Z
Si

f
›G

›~n
ds ¼

XN
i¼1

Z
Si

G
›f

›~n
ds ð13Þ

where Si is the surface of the ith conductor, c is a coefficient depending on the surface
shape and G is the fundamental solution of the three-dimensional Laplace equation:

Gðj~r2 ~r0jÞ ¼ ð4pÞ21ðj~r2 ~r0jÞ21

From equation (9) one obtains:

›f

›~n
¼ ~n · ð ~Hfil 2

~HÞ ð14Þ

Substitution of equation (14) into equation (13) yields:

1

2
fþ

XN
i¼1

Z
Li

f
›G

›~n
dl ¼

XN
i¼1

Z
Li

G~n · ð ~Hfil 2
~HÞdl ð15Þ

Equations (9), (10) and (15) contain four unknowns Ii, f, ~Hfil and ~n · ~H so that an
additional relation between these quantities is required to render the formulation
solvable. In this role, the time domain SIBC equation (4) can be used.

Taking the scalar product of equation (8b) and the normal unit vector ~n leads to the
following result:

›

›t
ð~n · ~HÞ ¼ 2m21~n · ð7 £ ~EÞ ð16Þ

Applying the vector identities to the right hand side of equation (16) and using
equation (4), one obtains:

m21~n · ð7 £ ~EÞ ¼ m21
X2

k¼1

ð21Þk
›Ejk

›j32k

¼ m217 · ð~E £ ~nÞ ¼ 2
›

›t
7 · ~F ð17Þ

Substituting equation (17) into equation (16) and taking into account the fact that both
current and field are zero at the initial moment of time, the SIBC for the normal
component of the magnetic field at the conductor’s surface is obtained:

~n · ~H ¼ 7 · ~F ð18Þ
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Substitution of equation (18) into equation (15) yields:

1

2
fþ

XN
i¼1

Z
Si

f
›G

›~n
þ G7 · ~F

� �
ds ¼

XN
i¼1

Z
Si

G~n · ~Hfilds ð19Þ

Equations (5), (9), (10) and (19) can be solved with respect to Ii, ~Hfil and f using the
iteration procedure proposed by Di Rienzo et al. (2003).

Let I ðmÞ
i be the total currents at the step m. Then I ðmþ1Þ

i are obtained as follows:

(1) calculate ~Hfil using equation (10);

(2) solve equation (19) to obtain f ðmþ1Þ ¼ f ðmþ1Þð~r; tÞ over the conductor’s surface;

(3) calculate fðmþ1Þ
k ; k ¼ 1; . . . ;M ; in the vicinity of the sensor k according to BIE

method;

(4) calculate 7f (mþ1) at the location of each sensor; and

(5) calculate I ðmþ1Þ
i using equation (11).

Details of implementation are given next.

Numerical results
To illustrate the method, a system of three parallel conductors of circular
cross-sections and equal diameters D ¼ 50 mm is considered (Figure 1). Nine
sensors are placed at positions Pk, k ¼ 1; . . . ; 9; with sensitivity vectors parallel to
the x-axis.

For the sake of simplicity, suppose that the ratio of the radius of the cross
section of the conductors and their length is such that the field variation along the
conductors may be neglected. Thus the problem can be considered as
two-dimensional in the plane of the conductor’s cross section and equation (19) is
reduced to the following form:

1

2
fþ

X3

i¼1

Z
L

f
›G

›~n
þ G7 · ~F

� �
dl ¼

X3

i¼1

Z
L

G~n · ~Hfil dl ð20Þ

Figure 1.
Geometry of the problem

ðD ¼ 50 mmÞ
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where L is the cross section contour that has been discretized with constant
elements and G is the fundamental solutions of the two-dimensional Laplace
equation:

Gðj~r2 ~r0jÞ ¼ 2ð2pÞ21ln ðj~r2 ~r0jÞ

In the two-dimensional case, the SIBC equation (18) takes the form:

~n · ~H ¼
1ffiffiffiffiffiffiffiffiffiffiffi

psmt
p *

›H j

›j
þ

1

2d

U ðtÞ

sm *
›H j

›j
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t

ps 3m 3

s
*

3

8d 2

›H j

›j
þ

1

2

›3H j

›j 3

� 	
ð21Þ

where the coordinate j is directed along the contour of the conductor’s cross section.
The waveforms of the current pulses flowing in the conductors are the following

(Figure 2):

I 1ðtÞ ¼ 1 2 exp 2
t

T

� 	2
 !

; I 2ðtÞ ¼ 2 1 2 exp 2
2t

T

� 	2
 ! !

;

I 3ðtÞ ¼ 1 2 exp 2
3t

T

� 	2
 !

;

ð22Þ

with T ¼ 0:004 s:
The magnetic fields at the locations of the sensors Pkðxk ¼ 22D þ k · ð2D=5Þ;

yk ¼ DÞ; k ¼ 1; . . . ; 9; are computed by means of a commercial FEM software

Figure 2.
Current waveforms
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(Maxwell, Ansoft Co.) and are plotted in Figure 3. The FEM mesh has been refined
until the relative variation of the computed magnetic fields is lower than 0.001 percent.

The inversion technique is applied in the time interval from t ¼ 0 to 5T, which is
discretized into 1,000 time samples. This is the minimum temporal discretization that
assures stability of the numerical results. The inverse formulation is solved for each
time sample using five iterations. Convolutions are computed by means of an inverse
Fourier transform algorithm. The contour of each conductor is discretized using 40
constant elements. Numerical simulations prove that increasing the number of
elements does not change the results significantly.

Figure 4 shows absolute errors in the reconstruction of currents I1(t), I2(t), I3(t)
starting from the x-components of the magnetic field at points Pk, k ¼ 1; . . . ; 9; in the
case of copper conductors (conductivity s ¼ 5:8 £ 107 S=mÞ: As can be noted,
disagreement between reconstruction using Leontovich’s SIBC and Rytov’s SIBC starts
earlier than disagreement between reconstruction using Mitzner’s SIBC and Rytov’s
SIBC, due to the diffusion process of the magnetic field in the conductors: adoption of
higher order SIBCs increases accuracy in reconstructing the currents. The technique
has proven to be robust with respect to the choice of number and position of the
measurement points, as shown by Figure 5, which shows the errors when only five
sensors (P1, P3, P5, P7, P9) are used for inversion.

In order to investigate the variation in conductivity inside the conductors, the same
simulations as in Figure 4 have been carried out for the case of nine sensors and of
aluminum (conductivity s ¼ 3:8 £ 107 S=mÞ conductors (Figure 6): errors of different
order of approximations are higher than the corresponding ones in the case of copper
conductors, due to higher diffusion of magnetic field in the conductors for lower
conductivity values.

Figure 3.
Amplitude of the

x-component of the
magnetic field at P1. . .,P9

generated by the currents
of Figure 2 and computed

by FEM
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Figure 4.
Absolute errors with nine
sensors and copper
conductors

Figure 5.
Absolute errors with five
sensors and copper
conductors
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In order to investigate the dependence of the accuracy of the technique with the
distances between conductors and the proximity effect, a second simulation set-up has
been considered (Figure 7), with conductors nearer to each other. Reconstruction errors
(Figures 8 and 9) are higher than in the first test case and only Rytov’s SIBC gives rise
to acceptable results.

Figure 10 shows the computational costs for numerical solution of the formulations
employing SIBCs of different orders of approximation, in terms of computational times
normalized to the time needed for numerical solution of the boundary element
formulation employing the Leontovich SIBC. It is easy to see that the use of Rytov’s
SIBC leads to increase in computational time by only a factor of 4, compared with

Figure 6.
Absolute errors with nine

sensors and aluminum
conductors

Figure 7.
Second test case with

conductors nearer to each
other ðD ¼ 50 mmÞ
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Figure 8.
Absolute errors with five
sensors (P1, P3, P5, P7, P9)
and copper conductors

Figure 9.
Absolute errors with nine
sensors (P1, . . . ,P9) and
copper conductors
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the use of Leontovich’s SIBC. The numerical example considered here leads us to the
conclusion that the use of SIBCs of high order of approximation allows significant
improvement in the accuracy of results without significant increase in the required
computational effort.

Conclusions
The improvement in reconstruction accuracy of the new time domain BIE formulation
employing high order SIBCs has been demonstrated numerically in a simple test case.
The range of validity of the technique has been extended to current pulses of longer
duration and the computational burden has shown to increase only by a factor of 4.
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