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Abstract - Application of under and over-
relaxation is a very useful technique in solution
of non-linear problems. However, the choice of
the relaxation factor is problem dependent and
difficult to estimate. In this work we propose a
new method in which the relaxation factor is
chosen automatically by the computer code, based
on the dynamics of the convergence process. In
addition, the local application of relaxation
factors is introduced, so that different unknowns
have different relaxation factors. Two examples
are presented to demonstrate the proposed
method's efficiency.

I. INTRODUCTION

First, we establish how under- and over-
relaxation are defined in this work. In the following
equation:

a(i+]) = ai+D) + Ra(i+]) —a))] (1)
a represents the unknown vector potential at a node
or on an edge as will be shown in examples. The
index (i+1) and (i) represent iterations "i+1" and "i"
created during the convergence process. The term in
square brackets is the change in the unknown
between two successive iterations. If R is zero, no
relaxation is applied; under-relaxation is obtained for

"—]<R<0" and over-relaxation for "0<R<1I".

It is well known that, in many cases, the use of
relaxation factors to accelerate convergence is very
efficient [1,2]. In fact, some applications require
relaxation to converge. However, it is difficult to
determine an optimal value for relaxation, mainly
because it depends on the case to be solved. For
instance, in scalar potential applications, over-
relaxation gives good acceleration towards the
solution. On the other hand, the use of vector
potential very often requires under-relaxation [3].
For the scalar potential this is because in the curve

W(H2), H always increases regardless of the
saturation level. In using the vector potential with

reluctivity curve of the form v(B2), the change in B

after saturation is quite small for large changes in v.
As a result, the convergence process can be
unstable, and under-relaxation can be very useful
and even necessary.

In this work we propose a method of self-
adjustment of the relaxation factor, which takes into
account the dynamics of the ongoing convergence.
Also, because different unknowns behave
differently, we will introduce the application of a
local relaxation factor, in which each unknown has
its own relaxation factor, which is continually
adjusted during the process.

II. DESCRIPTION OF THE METHOD

The basic concept of this method is to allocate
one value of R to each unknown. Thus, R becomes
an array with the same dimension as the unknown
vector rather than a single value. In this way, each
value of R depends on the behavior of the unknown
with which R is associated.

The method follows these rules:

a) set for each unknown an initial R, and define the
increment dR :

b) for each unknown calculate the following two
differences: ‘

A(i-I) = a(i-1) - a(i-2) (2)

A(i) = a(i) —a(i-1) (3)
¢) calculate the product A(i) * Ai-1)";
d) if the product is negative, oscillation in
convergence occurred: in this case set:

a(i) = a(i-1), and R=R,. (4)
e) if the product is positive, there is no oscillation
and use:

R=R +dR (5)
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Rose is the value affected if the unknown had
oscillated. Normally it is smaller than R,. As soon
as an oscillation is detected, the value for the
corresponding unknown is set to its previous value
and R is taken as Rggc, forcing a restart with a
stronger under-relaxation. If there is no oscillation R
increases slowly towards over-relaxation. Thus, the
unknowns use different relaxation Ievels,
determined by their different behavior. Typical

values are: Ro=-0.6, dR=0.05 and Ryg.=—0.7.
These values are a matter of choice and depend on

application. A value of Ry=-0.7 is sufficiently small
for most applications. If convergence is good, larger
values can be used. A set of parameters can usually
be used for a whole class of problems.

III. EXAMPLES

To present some results, two examples using
different geometries and formulations are shown.
The first is related to a 2D vector potential
application using nodal finite elements and the
Newton-Raphson method. The second example is a
3D vector potential case, solved with hexahedral
edge elements and the successive approximation
method for non-linearity.

A. Example 1

The structure and mesh are shown in Fig. 1a and
the field plot in Fig. 1b. where the iron parts use the
B(H) curve of TEAM problem number 20 [4]. The
magnetic structure is coupled with the external
electrical circuit fed by a voltage source. The
coupled problem has its electrical and magnetic parts
solved simultaneously, giving, as results, the
potential on the nodes and the current in the coil [5].
This structure has been chosen because convergence
is difficult to obtain. Among other reasons for this,
the iron regions close to the airgap have narrow
sections and there is a coupling with the external
electric circuit. Also, because of the inductive
character of the circuit, currents established in the
coil vary from small to large values, covering many
different regions on the B(H) curve. Gauss
elimination is used to solve the matrix system.

b.
Fig. 1. a. Example 1: FE mesh. b. field plot.

Among many numerical results we will give
those directly related to the work presented here.
The results in Table 1 were obtained with a voltage
pulse of 30 Volts applied to the coil. We call the
present method Variable Local Relaxation (VLR)
and the classical relaxation method Fixed Relaxation
(FR) .

Table 1. Number of iterations for various time steps
for the fixed relaxation (FR) and variable local
relaxation (VLR) methods. NR=Newton-Raphson
iterations. SA=Successive approximation.

Time step(s) FR VLR

0.001 31 (NR) 21 (NR)
0.002 27 (NR) 25 (NR)
0.003 24 (NR) 19  (NR)
0.004 21 (NR) 22 (NR)
0.005 40 (SA) 26 (NR)




The number of iterations with VLR is somewhat
smaller than for the classical FR. However, the
most important remark concerns the fact that for
t=0.005 seconds, Newton-Raphson converges only
for VLR while the FR method does not
convergence. Therefore, the method of successive
approximations was employed to solve the non-
linearity, with slightly less accurate results as

expected. For this code, we have been using Ro=—
0.83 for successive approximation method, when

necessary, Ro=—0.1 for the Newton-Raphson

method, Rgsec=-0.75 and dR=0.05. As
complementary results, we remark that for V=10
Volts, both, FR and VLR gave very good results,
but for V=100 Volts, with very strong saturation,
only VLR with the Newton-Raphson method
converged.

B. Example 2

With the purpose of showing the flexibility of the
method, it was also applied to a 3D vector potential
problem. As mentioned before, TEAM problem
number 20 is solved using hexahedral edge finite
elements and a modified ICCG solver [4,6]. Fig. 2
shows the structure which is made of a magnetic
circuit, a coil and an iron pole under a magnetic
force. Fig. 3 shows the field plot in a quarter of the
geometry. Since the calculations were performed on
a personal computer (486-DX-66), the mesh is quite
coarse. The results presented here are for the
successive approximation method. For the FR

method, the initial value of R is "—0.78", which, in
our experience, gave the best convergence. For
instance, for R,=—0.83 convergence is obtained but
much slower than for Rg=—0.78, even though these

numbers seem to be close; for R,=—0.70, strong
oscillations were observed, and the process

diverged. For VLR, we choose Ry=—0.60, Rosc=—
0.85 and dR=0.05. As a result, with the FR
method, convergence was reached very slowly and
by the 40th iteration the average relative error was
close to 10~3. As is often the case with under-
relaxation methods, the closer we get to
convergence, the smaller the ratio of convergence
becomes. Quicker convergence is obtained sing
VLR. In Table 2, the same relative error was
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reached by the 22th iteration. Complete convergence
( our criterion was a relative error smaller than 104
for all nodes) was obtained by the 36th iteration,

giving an average error close to 0.3x1075.
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Fig. 2. Problem structure (TEAM Problem 20)

An interesting fact is noted in Table 2 with the
VLR method: as the iterations are performed and the
error diminishes, the average R, from the 10th to
the 15th iteration decreased, contrarily to what
happened before. This indicates that many
unknowns had oscillated during these iterations.
Their respective values of R were set as Rosc,
producing an average R smaller than what we
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should expect if there were no oscillations. This is

the reason why the error continued to decrease.

Table 2. Errors for various iterations.

Iteration Average R | Error, VLR | Error, FR
1 -0.60 0.43e-1 0.23e-1
5 -0.48 0.82e-2 0.74e-2
10 -0.28 0.20e-2 0.31e-2
15 -0.39 0.68¢-3 0.16e-2
20 -0.29 0.22e-3 0.88e-3
25 -0.22 0.32¢-4 0.50e-3
30 -0.21 0.11e-4 0.29%¢-3
36 -0.27 0.31e-5 0.16e-3
40 0.11e-3

(Ui

Fig. 3. Example 2: field plot.

One concern that arose during implementation of
the proposed method was that the results are not
modified. In the problem presented above, the final

values of B, obtained by derivation of the vector
potential did not differ between methods by more
than 10~4. This difference could also be attributed to
differences in convergence.

IV. CONCLUSION

A local variable relaxation method was presented
in this paper. With this technique the convergence
process adjusts the relaxation factors of the
unknowns automatically, taking into account their
oscillations and their different behavior dynamically.
In fact this method is not completely automatic,
since initial parameters have to be set. However,
when good initial values are chosen, the code will
adjust the relaxation factors according to the case
under calculation. We noticed that for problems
exhibiting easy convergence the new method has
little advantage compared to classical methods, but
in some critical cases, where these methods fail to
converge, the proposed method was able to solve
them successfully.
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