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Abstract - We present in this paper the use of
the 3D hexahedral edge element for two 2D

applications. The procedure consists of first
computing the 3D hexahedral edge elemental
matrix. Then the "reduction" for 2D domains is

applied in the assembling process, resulting in a
simple way to compute 2D problems using edge
elements without the need to define special 2D
finite elements. The method maintains all the
properties of a 2D method with the exception of the
elemental matrix calculation.

I. INTRODUCTION

Edge elements have been used successfully to solve some
problems such as computation of waveguide modes where
spurious modes are avoided. Also, in 3D low frequency
problems using vector potential formulations, edge elements
provide accurate results. However, the application of edge
elements for 2D applications has the inherent difficulty of
defining a simple and effective 2D element. In the procedure
presented here these difficulties are eliminated by using a
straightforward 3D hexahedral element. To apply this method,
only the assembling is modified in order to match the
necessary physical approach.

1I. FIRST APPLICATION: TE WAVEGUIDE MODES

Computation of rectangular waveguide modes can be
treated by the 2D approach presented here, in which the xy
plane is the cross-section of the guide. For this type of
waveguide, the propagating field is H; while E; is equal to
zero. The required equation is

2
OH: T8, (2 kH, - (1)
ax~” dy~

The analytical solution for the waveguide is

H.(x,v) = Hocos (IZLZE cos ("bl)x (2)

a
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where a and b are the dimensions of the waveguide. At cutoff,
the propagation constant is zero (y=0) and the wavenumber
k3=1vzy£ is used instead of the propagation constant.
Substituting the solution in Eq. (2) into Eq. (1) at cutoff

gives
2_(may , (nx)? 3
= () +( b ) 7
The lowest mode of propagation can be obtained by:

- (G)
K = (l)z
b

The frequency is calculated from kcz=(2.1rf)2u£. Since Eq. (1)
is similar to the well known 2D vector potential formulation,
nodal finite elements can be easily applied to solve it.

In applying edge elements[1-3] it is much more
convenient to use the electric field E which only exists in the
xy plane. The equivalent equation for this waveguide is

n=0 if a>b

if b>a

m=1,

Sfor
for

m=0, n=1

VxVxE - k’E =0 (4)

Application of Galerkin's method to this equation produces
the matrix system

[A] [E] = kZB] [E] (5)
where [A] is generated from the first term in Eq. (4) and [B]
from the the second term. To obtain the lowest frequency of
propagation the eigenvalue problem in (5) is solved. To do
so, Eq. (5) is written as
[AT[A] (E] = kZ[AY [B) [£]
Denoting [Cl=[A]~/{B] and kZ = I/A gives

[CTE1 = AE] (6)

This is a standard eigenvalue problem. Application of the
Power method yields the largest eigenvalue corresponding to
the smallest k2. [4]
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1> APPLICATION OF 3D EDGE ELEMENTS

The waveguide is represented by a single layer of
hexahedral elements as shown in Fig. 1, where there are 3x3
elements, as an example. The height of the elements, "c" is
chosen such that the element is close to a cube. The element
is shown in Fig. 2 in local coordinates u,v,p, and the field E
in the element is given as

2
E,'W[
i=1

1
E=
where E; is the circulation of E on edge i, and w; is the
vector shape function defined in [5]. As an example,
wo=u(1-p)Vv. Application of Galerkin's method to Eq. (4)
vields the terms of matrices [A] and [B] in Eq. (5). These are
required to obtain the matrix system in Eq. (6). The elemental
contribution matrices have the following general terms:

a,,,,,:fsi(wam).(wan)dv bmn =f kg,urw,,.-w,dv

where the indices m and n represent two edges of the element.
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Fig. 2. The hexahedral element before reduction.
IV. REDUCTION TO 2D APPLICATIONS

The physical configuration treated here requires that the
circulation of E on edges 5,6,7, and 8 (parallel to the z axis)

be zero. Furthermore, the values of the unknowns on edges
1,2,3, and 4, should be the same as for edges 9,10, 11, and
12, respectively. A simple example to the system of
equations is

arx)+ a2 + aix3 = by
@K+ @F2+ wFx3=b
az;x) + azx2 + a3x3=bs

(a11 + ai3px; + apz2 = by
(@21 + @31 + a2x2=b2

The system on the left can be simplified as shown if it is
known apriori that x;=x3 and bj=b3. The application of this
procedure for the problem can be performed easily in the
elemental matrices A(12,12) and B(12,12) as follows:
- neglect all terms in columns and rows 5,6,7,8, because the
values of the corresponding unknowns are zero.

- add the contributions into the following form:

[ ar+ans

ai+anio  anHaLil az,#az,zz]
|
1

L @, 1+@e  @2® 10

The same transformation is applied to matrix B reducing
A(12,12) and B(12,12) to matrices having dimensions (4x4)
since only edges 1,2,3, and 4 are used. A principal feature of
this method is that only the unknowns of the lower plane
(p=0) are computed. Note also that since, for example, aj 10
is equal to ap g, the symmetry of the matrix is maintained.

V. RESULTS

We apply the system for some rectangular waveguides
obtaining the following table as a result

Waveguide Theoretical ~ 3x3 mesh 6x6 mesh
size (m) value for ko

1x1 9.87 108 10.09
1x2 2.487 2.7 2.52

2x3 1.096 1.2 1.12

3x3 1.096 1.2 1.12

The theoretical minimum value of ki is calculated as
indicated in Eq. (3). As the mesh is refined, the lowest
eigenvalue approaches the theoretical value.

VI. SECOND APPLICATION: 2D VECTOR POTENTIAL

In spite of the fact that the 2D vector potential
formulations are well established, we will present an approach
using edge elements. The classical vector potential problem is
defined by the equation



8 10A 5 10A__, 7)

ox u ox
where the current density J and A have only components in
the z direction. Solving this problem means obtaining the
magnitude of the z component of A for each node of the mesh
while Ay and Ay are zero. This observation leads to solution
of this problem with edge elements. In figure 1, if the height
of the hexahedral element is equal to 1, we can obtain directly
the required value of A;, noting that with this kind of element
the unknown ts the circulation of the vector on the edge.
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Fig. 3. Geometry with superimposed edge element.

Instead of solving Eq. (7) we will consider the complete 3D
equation bellow:

vxlvsa = (8)

u

The vector potential A is defined in the edge element of Fig.
2as
12
A= z wWiA;
i=1

and the unknowns to be considered are the values of A; on the

12 edges. The application of the Galerkin method associated
with the edge element yields the matrix system

[P11A] =|S] (9

where [P] results from assembly of the left side terms of
equation (8). The generic term of the elemental matrix
(12x12) is:

Pmn =f:’ (wa’")' (wa")dv (10)
LB

The term of the source matrix {S] is calculated as

Sm =fJ-w,,,dv (11)

3751
VII. THE 2D APPLICATION

For the 2D application it is clear that the circulation of A
on the edges /,2,3,4, and 9,10,11,12 are zero, since A exists
only on edges 5,6,7,8, parallel to the z direction. We impose
this condition by reducing the (/2x12) elemental matrix to a
(4x4) matrix, as well the source matrix, taking into account
only the following contributions:

i P55 pPse P57 pss ’rpsﬁi
65 66 67 68 | p6
p 14 p 14 Ps | (12)
P75 P76 P77 P78 l P7J
ps8s pss psz P88 | P8

From the complete elemental matrices only the terms in
Eq. (12) should be evaluated. In fact, in the 2D problem only
the mesh in the xy plane is defined. If we associate each node
with the corresponding edge emerging from ‘this node, we
preserve the same number of unknowns and bandwidth of the
global matrices [P] and [S] as for the nodal element. In others
words, a nodal element software can be easily employed, as
well all the pre and post processors. The only change is in the
evaluation of the elemental contribution matrix [P] and the
source vector [§].

VIII. RESULTS

The problem in Fig. 4 was solved with nodal and edge
elements. The graphical results for the two case shown in
Fig. 4 are so close that visual inspection does not show any
difference; the difference between maximum values of A is
1.9%. This example was performed to test the method in a
realistic case, including airgaps, coils and iron; the number of
nodes (or edges perpendicular to the xy plane) is 256.

Fig. 4. Edge element solution using reduced 3-D elements.
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To check accuracy, the problem in Fig. 4 was solved. In
this case there is a conducting block with a current density J,
of 10 A/mm?. The analytic solution [6] gives the magnetic
field energy as 2.2082 MJ/m. Using a mesh with /3x13
nodes/edges we obtained 2./20 and 2.172 MJ/m for nodal and
edge formulations, yielding errors of 3.99% and /.64%.

Fig. 4. Magnetic field in a current carrying block.
IX. CONCLUSIONS

An efficient and well known 3D edge element is applied to
solve two different types of 2D applications: the problems of
computing lowest eigenvalue for TE modes in rectangular
waveguides and magnetostatic solutions using the magnetic
vector potential. The calculation of elemental matrices is
performed using the normal 3D hexahedral edge element. The
reduction to a 2D application consists of modifying the
assembly process. This method avoids the need to define

special 2D edge elements and has all the advantages of 2D
methods. The results presented here for the first application
match the theoretical values for the given waveguide. For the
second application, one of the examples shows noticeable
improvement in accuracy. One of the advantages of this
method is that existing software can be easily extended to
include this technique. Pre- and post-processors can be used
without modifications. Memory allocation is not affected
either.
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