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Abstract - A method of providing continuity for
discretized results obtained in FEM calculations is
presented. This consists in defining a very fine
mesh in the post-processor section and calculating
derivative quantities from the smoothed potential
values. The fine mesh thus defined is called a
virtual mesh. Noticeable improvements in values of
fields and forces are obtained by this technigue.

[. INTRODUCTION

The FEM provides results that are highly dependent on mesh
quality. If the values of potentials are relatively consistent in
different meshes, their derivative quantities (fields and forces)
are susceptible to large variations if the mesh changes from a
fine to a coarse mesh. In this paper a method of providing
continuity for discretized results obtained in FEM
calculations is presented. Two techniques are used for this
purpose. The first is generation of virtual finite elements, by
which is meant a set of elements generated in certain regions
of the solution domain in the post-processing step of
calculation. The second technique is smoothing of potentials
obtained directly from the FEM, which will be applied to the
virtual elements in order to calculate derivative quantities
therefore improving accuracy of results. The combination of
the two techniques to provide continuity of results as well as
to improve the results of a relatively poor mesh is presented.

In order to show the efficiency of this technique two
examples are given: the first is intended to show the
improvement in field values and the second shows the
improvement in force values obtained by the Maxwell tensor.

II. VIRTUAL ELEMENTS

The dashed lines in Fig. 1 indicate the "real mesh", generated
in the pre-processor and used in the solver.
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Fig. 1. Virtual elements and the real mesh.
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Suppose we are interested in physical results in the region

delimited by lines A and B, placed close to line L, selected by

the user and crossing only in air. It would be very useful if

this region could be discretized using a highly refined mesh.

Instead, it is possible to construct a "virtual mesh" similar to

that shown in solid lines in Fig. 1. The method used to

construct the virtual mesh is as follows:

- using the real mesh elements, by interpolation on potential
FE functions, obtain the potentials at P}, P2,....Py.

- with the coordinates of P}, P2,....P, and the interpolated
potentials, all data required are available

Using this technique a mesh of any density is defined in the

post-processing step, without increasing computation time

and memory allocation either for mesh generator or solver.

III. THE SMOOTHING TECHNIQUE

If a virtual element is completely inside the real element,
the field provided by the virtual element will be identical to
the field calculated in the real mesh, in spite of the fact that
the virtual element could be much smaller than the real
element. To improve the result, it is necessary to apply a
correction to the potential values.

Normally, the potential values of two different meshes are
quite close. The difficulty with poor meshes appears when the
derivatives of potentials (for example: fields and forces) are
needed [1,2]. Therefore, smoothing potential curves means
that relatively small changes in the original curve are
introduced. This provides assurance that the results of the
calculation are not violated. For this reason smoothing is
performed on potentials instead of fields.

Using only lines crossing through air (or airgaps) small
discontinuities in A are generated due to discretization. These
values can be modified slightly to obtain a closer
representation to the physical results expected from such
electromagnetic phenomena.

Among many methods, the least squares method was the
most suitable for our purpose. This method yields a
polynomial that provides the best fit to a given data by
minimizing the difference between the given data and those
obtained from the approximated curve [3]. A direct
application of the method is not suitable for this problem,
since the number of points required to correctly describe the
potential may be very large (between 200 and 600 points).
Furthermore, a single high order polynomial is mnot
convenient since high order polynomials yield curves with
strange shapes, without any relationship with the potential
curves. The solution to this difficulty is in local application
of the least squares method. Fig. 2 presents the technique by
which this is accomplished.
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Fig. 2.

Suppose we wish to calculate the smoothed value at point
5. We consider two neighboring points on each side of point
5. These are points 3, 4, and 6, 7. Using the least squares
method we obtain the coefficients of the polynomial curve
F(x) from these points. Afterwards we calculate the new value
for the potential at point 5 as F(x5). For point 6 we consider
points 4 through 8 and so on.

Note also that it is possible to use different degrees for the
polynomial F(x). According to several tests performed we
obtained best results with first order polynomials and using
four neighboring points (on each side of the smoothed point).

This procedure is applied for lines A and B of Figure 1.
Thus we calculate the suitable potential values for points P1,
P2,.., Pn. With these, the improved values of the fields for
the virtual mesh are obtained.

Two methods were used to analyze results of the virtual

elements and to compare these with the results of the real

mesh. These are:

a) calculation of flux errors: two points on line L having
potentials A; and A, give the flux crossing the line
segment between these points as "A7-Aj". It is also
possible to calculate this flux using the sum of elementary
fluxes given by the product of B.I along the segment. Two
values of flux are calculated: using B from the real mesh
and B from the virtual elements, which are then compared
to the difference "A ;-A". It is expected that the integrated

_ flux is close to this difference, showing consistency of the
field values with the potentials that generate them. The
flux errors for both, real and virtual elements were
evaluated.

b) mesh comparisons: the second method is the comparison
of results for several meshes for the same problem.

IV. EXAMPLE I: CALCULATION OF FIELDS

Figs. 3a and 3b show a domain with an airgap between
two iron pieces. The aim of this example is to observe the
shape of the field and flux errors. Two meshes were used: the
first mesh (mesh A, Fig. 3a), uses rectangular elements, with
144 nodes in the airgap region. This type of FE provides
excellent accuracy and results match experimental values[1].
The second mesh (mesh B, Fig. 3b), is coarser, with 37
nodes in the airgap region. To avoid confusion we will use
the following notations: VM for virtual mesh and RM for
real mesh.

The potential curves obtained from the finite element
solution with and without smoothing are visually
indistinguishable although they are not identical. Subtle
differences can cause large changes in derived quantities. Fig.
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4a shows the field perpendicular to line L of mesh A, with its
expected discontinuities, and the field for the VM, with lower
discontinuities. The smoothed curve is displaced upwards to
simplify visualization. Fig. 4b shows the equivalent curves
for mesh B. The superposition of these curves shows that for
the RM, the difference in fields are much larger compared to
the VM fields. Flux errors for the two meshes are:

A - Real
0.107E-3

A - Virtual
0.113E-4

B - Real
0.8622E-3

B - Virtual
0.530E-5

The flux errors are significantly lower with the VM
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Fig. 3. Mesh and solution. a. Dense mesh, b. Coarse mesh.

V. EXAMPLE 2: CALCULATION OF FORCES

In the case, shown in Fig. 5, there are 2 parts of iron, with
the bottom part displaced to the right. It is well known that
the attraction forces can be calculated with good accuracy -
using the Maxwell tensor. However the restoring forces are
difficult to evaluate by any method. In this example we will
be concerned with flux errors, field shapes and especially
forces.

Three meshes were used in this study: mesh A (Fig. 6a) is
the densest, with 67 nodes in the airgap region: mesh B (Fig.
6b), has 20 nodes in the airgap, and mesh C, the coarsest, has
only 13 nodes in this region (Fig. 6¢).
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Fig. 4. Field plot. a. For mesh A, b. For mesh B.

Figures 7a, 7b and 7c show the y component of the field
(perpendicular to airgap) obtained for the three meshes; the
field calculated by the VM is displaced upwards; note that
even for the mesh C, the agreement with the results from
mesh A is quite good, considering the small number of
elements. This is not very surprising, since the fields in this
direction are normally quite accurate.

Figures 8a, 8b and 8c show the x component of the field
(paralle} to the airgap). In these figures there is no
displacement in the smoothed field, since it is easy to
distinguish between the curves visually. We note relatively
good agreement between VM curves for mesh A and B
although the fields for the RM differ more. The field curve for
mesh C is quite different from the others, for both RM and
VM, which is a consequence of the coarseness of this mesh.
Forces are calculated for 3 lines in the airgap: one in the
middle, the second and the third close to each of the two iron
pieces. Based on the numerical results, the following remarks
are appropriate:

a) The errors for crossing flux are always smaller with VM (3
to 10 times smaller), depending on case.

b) Attraction force: results for virtual mesh agree well. The
values for VM are slightly smaller that values for RM (about
3%). However the variation of force for the three lines is
smaller with VM.
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Fig. 5. Field plot as used for evaluation of forces.
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Fig. 6. a. Fine mesh, b. Medium mesh and c. Coarse mesh.

¢) Restoring force: it is well known that accuracy for this
force is normally poor in thin airgaps. This is due to the fact
that restoring forces depend on the product "hyx.hy"; if the
value of hyx is somewhat affected by the mesh, the restoring
force will be affected as well. Note also that the attraction
forces depend on ”hyz—hxz" and as hx is normally much
smaller than hy the value of this force is less affected by poor
accuracy of hg. In spite of the above, VM provide some
improvement in this area. For mesh A, results for VM and
RM differ by 1.2% and the variation of force on the three
lines is very small (less than 2% for both types of mesh).
For mesh B values of force are the same for both VM and



RM and 6.5% bigger than values of mesh A. However, the
variation of force for the three lines is 0.8% with VM against
6.9% for RM. Mesh C, is too coarse to provide good results;
however, for VM the average force is 23.6% larger than the
correct value of mesh A and 28.1% with the RM. Variation
among the three lines is much smaller for VM (0.56%) than
for RM (11.0%).
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Fig. 7. Perpendicular fields in gap. a. Fine mesh, b. Medium
mesh and c. Coarse mesh.

VI. CONCLUSIONS

A new technique to provide continuity to discretized FEM
results has been presented. Using this procedure, a very dense
mesh of virtual elements is generated in the post-processing
step, by calculating values of magnetic fields from a
smoothed set of vector potentials. This smoothing of
potentials provides the required continuity for fields. Different
degrees of the least squared method and number of
neighboring points for local application of the method were
tested and an efficient set of these variables was obtained.
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Two critical examples related to the shape of the field and
calculation of force have shown a noticeable improvement of
these quantities when VM is applied. A strict rule, based on
the calculation of crossing magnetic flux error was employed
to test the accuracy of the results. In all cases, fields and
forces calculated by the virtual elements are more accurate
than the discretized results obtained directly from the FEM.
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Fig. 8. Tangential field. a. Fine mesh, b. Medium mesh and
c¢. Coarse mesh
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