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Abstract - Optimal performance of an adaptive Finite Element
(FE) computation depends on the availability of a reliable and
computationally efficlent ‘a posteriori® error estimation strategy.
The reliability of an error estimate ensures that the quality of the
computed solution remains within a specified accuracy and also
guarantees that the error estimate applies uniformly over the
entire problem domain. Reliability analysis of two different error
estimates with a model problem and numerical test results are
reported in this paper. A mathematical model for the reliability
assessment of an ‘a posteriori’ error estimate through asymptotic
exactness is also presented. The reliability of the performance of
two different error estimates is assessed by adaptively solving a
linear boundary value problem.

L. INTRODUCTION

In finite element analysis, discretization error plays a major
role in determining the final solution accuracy. Solution
accuracy in the range of 5%-15% is acceptable for most
engineering applications but for some applications very high
accuracy in the range of 2%-3% is required. In order to improve
the accuracy of the solution adaptively, an error estimate should
be reliable enough to identify the critical regions of the domain
which has larger errors. It requires an efficient and quantitative
error estimate to accurately gauge the error in the solution. Thus
the efficiency of an adaptive FE computation depends on the
availability of acomputationally robust and reliably stable error
estimate. The reliability of an error estimate provides a measure
of accuracy of the computed solution. Reliability analysis for
electromagnetic field problems using two different ‘a
posteriori’ error estimates is proposed in this paper. A
mathematical model with a problem definition for reliability
analysis is presented in the first part. In the second part, the
theory of reliability assessment of an error estimate through
asymptotic exactness is outlined. Numerical test results for a
sequence of nearly optimal adaptive meshes for a 2D problem
is presented in the third part of the paper.

II. RELIABILITY OF AN ‘A POSTERIORI' ERROR ESTIMATE IN
ADAPTIVE FINITE ELEMENT COMPUTATION

For adaptive solution, many ‘a posteriori’ error estimation
strategies are available [1-3]. Often the error estimates are
based on the weak variational formulation incorporated in the
FE problem definition. Irrespective of the field variable used
and the methodology employed, an error estimate should
perform uniformly and reliably at all stages of a computation so
as to make an adaptive process more effective. In addition to
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reliability and robustness, an error estimate should be capable of
effectively handling geometric and other singularities. It should
also gauge the error accurately with different physical modeling
characteristics. An ‘a posteriori’ error estimate helps to
determine the optimality of the mesh when error becomes equal
on all the elements of the domain. Thus an asymptotically
optimal mesh is obtained when all the error indicators attain
asymptotical exactness.

A. Reliability Analysis

Reliability is often based on an ‘a priori’ mathematical
analysis and also on an ‘a posteriori’ quantitative error
estimation. Due to uncertainty in the input data ‘a priori’
mathematical analysis is of little use for practical error
estimation. Often ‘a posteriori’ error estimates are used for
estimating reliable error bounds utilizing the data available
during the process itself. With the exception of a few methods
[4-6,8-10] most ‘a posteriori’ error estimation strategies are
based on heuristic reasoning without extensive mathematical
treatment for reliability analysis. Error estimates are often based
on benchmark computations satisfying specific computational
goals. This is due to the fact that the quality of error estimates
are sensitive to the complexity and structure of a problem
domain, the mesh quality and the nature of singularities.

B. Mathematical Model for Reliability Analysis

The rate of convergence of an approximate solution
corresponding to the sequence of adaptive meshes is governed
by the degree of deviation of a mathematical model from the
exact physical characteristics of the problem. The rate of
convergence is often characterized by the regularity of the
solution, the singular behavior of the problem and the reliability
of the mathematical model adopted. The reliability of an error
estimate is judged by the asymptotic exactness which is based
on the convergence properties of the problem. For a well-posed
problem satisfying the consistency and compatibility
conditions, the reliability of an error estimate can be best
measured by means of local and global effectivity indices. From
the convergence characteristics of the finite element
formulation, the sequence of approximate solutions in an
adaptive process ultimately converges to exact solutions in
energy norm satisfying the given error tolerance. If the solution
converges to the exact solution in an optimal mesh, the error in
the solution also attains asymptotic convergence. The
well-posedness of a problem involving the existence and
uniqueness of an exact and approximate solution and the
guarantee of convergence helps to reliably estimate the error in
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the solution. It leads to the application of a rigorous
mathematical and functional analysis to the error estimation.

All elliptic boundary value problems possessing the
property of linear self adjoint positive definiteness should
satisfy the setof consistency conditions such as well-posedness,
continuity and completeness in order to achieve an asymptotic
convergence of a solution.

C. A Model Boundary Value Problem

Inorder to analyze the consistency conditions for asymptotic
convergence, we define a model boundary value problem as
follows: Consider we seek to develop a model (weak Galerkin
formulation) for approximation of a problem by an adaptive FE
method. Let Q C R? be a smooth bounded domain with a
boundary I" = dQ =Ty + I, consisting of two disjoint sections

Iy and T, suchthat I, NI, =¢ onwhich we wish to find
the solution @, then,

~AP =f in Q 1)

on T and Kl =g on T, 2)
an
To compute a reliable ‘a posteriori’ error estimate for the
above problem, it should satisfy the conditions such as
well-posedness of a problem (existence and uniqueness
property), coercivity of the bilinear form or the V -Ellipticity
condition and symmetry of spaces.

¢=¢o

Assuming that the solution ® lies in the standard Sobolev
space H'( Q ) of all functions which together with their
generalized first derivatives are square integrable on € , then
the weak formulation can be defined using the following
abstract mathematical forms,

WQ)=[v EH(Q):v=0 on r,) 3)
Find:
@ € @+ V such that B@®,v) =L() = (f,v) W E V, (4)

where B(.,.) and L(.) are bilinear and linear forms defined on
the finite dimensional approximation space V as follows,

B:VxV—+R :B(®,v) = j (VO.Vv) dQ 5)
Q

L:V—Rand L(v)=[nfv dQ+L gv ds ©)

By using the classical projection theorem (the Lax—Milgram
theorem) [7], the uniqueness and existence of a weak solution
for linear elliptic boundary value problems satisfying the
following conditions can be verified:

Let 3a,, a,, a; > 0 such that

a) B(®,®) 2 a | D for VO € V Coercivity )
b) B(®,®) = 0 for V& € H'(Q) Positive definite  (8)
¢) B(®,v) < a,|®| ||v]| V®.,v €V Bilinear ©)

d) |L@)|s a;||®|| for V@ €V Linear (10)
The above analysis guarantees the existence and uniqueness of
a weak solution to the problem and is used for computing the
error. The basic consistency conditions such as well-posedness,
compatibility conditions and operator characteristics such as the
linearity, self adjointness and positive definiteness can be
utilized to derive local and global error measures.

D. Error Measures in Reliability Assessment

A critical aspect of the reliability of an approximated
solution is the availability of an accurate error measure. The
accurate measure of an error in the solution provides a feasible
and practical way of judging the degree of the quality of the
solution. The error measure also gauges the size of an error
present in the solution for adaptive accuracy improvement. The
choice of an error measure depends on the goal of computation
and the method employed. The convergence of solution to the
exact solution occurs when the system energy converges in some
energy norm. Hence the use of an energy norm as a measure of
error is a natural choice. The energy norm is associated with the
Sobolev space H'( Q ). The computation of error measures

¢

based on the energy norm is employed in almost all ‘a
posteriori’ error estimation schemes [6]. In order to have a
realistic understanding of the distribution of error and also to
accurately assess the quality of the solution, different error
measures are necessary. Among the error measures, energy
norm, relative percentage energy norm error, local and global
effectivity indices are commonly used for error analysis and
mesh refinement.

The effectivity index can be used to predict the accuracy and
distribution of error locally and globally over the solution
domain. Inanadaptive process when the solution converges, the
estimated error also converges to the true error and so the
effectivity index asymptotically converges to one. This
convergence behavior is very useful to measure the reliability of
an error estimate. The asymptotic exactness of an effectivity
index allows one to specify reliable error bounds for its effective

performance. A useful range of boundsis 0.8 = @ < 12.
In a practical application the approximate solution will never be
exactly equal to the true solution but it will be within the
specified error tolerance. If the value of the effectivity index is
outside the above range, itcan be concluded that either the error
is overestimated or underestimated and hence the reliability of
the method and also the quality of the solution will be poor for
practical applications.



III. RELIABILITY ASSESSMENT OF AN ERROR ESTIMATE
THROUGH ASYMPTOTIC EXACTNESS

The fact that an ‘a posteriori’ error estimate is exact in the
asymptotic rate of convergence in a global energy sense ensures
that the solution satisfies the criteria of a convergence theorem.
Itestablishes confidence in usage and reliability of the method
employed. The asymptotic exactness verifies that the
approximated solution over the domain is very close to the exact

solution in the limit of the element size /i, tending to zero..

The effectiveness of an error estimation strategy can be
gauged by the relation between the accuracy measured in the
energy norm and the number of degrees of freedom [6]. An
efficient and reliable error estimate will accurately measure the
discretization error over a wide range of mesh spacings and on
different classes of problems. In an adaptive FE system, the
assessment of the quality of a system is relative to the criterion
of optimality. The reliability of an ‘a posteriori’ error estimate
can be best measured by means of its effectivity index,
© = |le|l/ |l el where || e and || e|.. are computed and
exact errors respectively in energy norm. For engineering
applications with an accuracy range of (say, = 10%) we
require 1©-101=<02. If © = 1.0the true error is
overestimated rather than underestimated. Hence for practical
applications the error estimate should be in an acceptable range.
If ©>20 or ©<0.5the error estimate will not be
acceptable for practical applications. In order for an error
estimate to be reliable and efficient, the range for an effectivity
index should be 0.8 < ©® < 1.2. This result has been
established through various numerical experiments for different
practical problems [4-6].

The error estimator is said to be asymptotically exact if
© converges to one whenever the true error in the solution
converges 1o zero. From the effectivity index computed locally
and globally, itis possible to conclude that the error estimate has

anasymptotic rate of convergencei.e, ® — 1 as h,,, — 0. In

other words the sequence of approximate solutions over the
adaptive meshes converges to exact solutions in the limit of
maximum size of an element tending to zero or the degree of
approximating polynomial tending to infinity. In a realistic
sense hnax Will never be zero and so the error estimate will be
effective within an acceptable range depending on the kind of
problem solved.

The effectivity index not only defines how reliably the error
estimate performs, but also its asymptotic exactness [5,6,9].
This means that the estimated error tends to the exact value when
the mesh is refined. It provides an efficient way of assessing the
reliability of the method employed in the process. By
establishing a mathematical relationship for proving the
asymptotic exactness of the method, it is possible to verify and
assess the reliability of the error estimation technique. The
asymptotic exactness of the effectivity index © can be
established as follows,
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A. Asymptotic Exactness of Effectivity Index

Let® and || €
inenergynorm ( || " | = | ®..~®"|| ) corresponding to an

be the post—processed solution and the error

intermediate refined mesh ML), then the error estimate || e ||
will be asymptotically exact if [ e ||/]| e |.—0as
| € Jl— O . To prove this we write the error estimate || e || as

follows,

el =]o-2|

| (@e— D) - (Pex- D)

| 1n

Where®,, and @ are exact and current approximated
solutions. Now by using the triangle inequality,

[@a-@] - | Pu- @ = [e ||

S @@ |+ || Qu-@" ] (2

lel-Nell slel s lela+lel 13)

Dividing the equation (13) by || e ||.. and using the effectivity
index © the above equation can be rewritten as,

iI-1el/lel}s@ s {t+lel/lel) a9

This shows that the effectivity index © is asymptotically exact
and it approaches one as the ratio || " || / || e J..—~ 0. By
a=)e ||/ llel=02, the
asymptotic bound for the effectivity index is derived as:

e |

assuming the ratio

(l-a) =8 s (l1+a) =>08 =6 s 12 (15)
The effectivity index © in this range will provide a most
reliable and efficient measure to estimate the error and also to
assess the reliability of the method for most engineering

applications.

IV. NUMERICAL TEST RESULTS AND RELIABILITY ASSESSMENT

The reliability of performance of two different ‘aposteriori’
error estimates are assessed by applying them for adaptively
solving a 2D electrostatic problem. The post-processing and the
gradient of field method of error estimates are utilized to
adaptively improve the solution of a 2D boundary value problem
with an L-shaped domain with a corner singularity in the form

of r%' sin%&, where r and @ are polar coordinates {3]. The

numerical test results for the two error estimates are shown in
table—1 and table-2 respectively. The convergence of error in
energy norm and the asymptotic convergence of the effectivity
indices are illustrated in fig. 1 and fig. 2 respectively. From the
numerical test results and the asymptotic convergence plot of
effectivity indices, it is established that the reliability of
performance of the proposed error estimates is within the useful
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range of bounds i.e, 0.8 = © < 1.2. From fig. 2 itis also
observed that the degree of reliability of the gradient of field
error estimate is superior to the post—processing error estimation
scheme. This is demonstrated by the fact that the gradient of
field error estimate provides an over estimate of the error in the
solution whereas the post-processing method under estimates
the error. From the numerical experiment, the asymptotic
exactness of the effectivity index is verified and the reliability
of the proposed error estimates is assessed.

TABLE -1
Numerical Test results for Post—p ing Error Estimat
Mesh | No. of | Max Rela- | Global Global Global
Num- | Ele- tive Error | Relative Energy Effectivity
ber | ments in % Error Normm liell | Index
1 21 17.9253 6.8762 15.6341 0.8208
2 48 15.8911 5.0606 11.8287 0.8535
3 120 9.7408 2.2487 6.9199 0.8813
4 306 7.0493 0.2047 0.8497 0.9104
5 534 7.0422 0.1548 0.6392 0.9727
6 891 7.0424 0.1233 0.5085 0.9817
7 1491 7.0401 0.0988 0.4244 0.9999
TABLE -2
Numerical Test Resulis for Gradient of field Error Estimate
Mesh Number No. of Ele- No. of Nodes Global Effec-
ments tivity Index
1 21 34 1.0867
2 30 47 1.1384
3 39 60 1.1676
4 126 167 0.9997
5 192 245 0.9998
6 309 378 0.9996
7 489 578 0.9998
8 759 872 0.9999
16 . . .
(a) - Maximum Relative Error in %
—] (b) - Global Energy norm Error
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Fig. 1 : Error Convergence Plot — Post-Processing Error Estimate

(a) — Post—Processing Error Estimate
1,1+ (b) - Gradient of Field Error Estimate
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Fig. 2 : Asymptotic Convergence Plot of Effectivity Index - ©

V. CONCLUSIONS

The reliability assessment of an ‘a posteriori’ error estimate
with a model problem is presented. The use of error measures to
evaluate the reliability of an error estimate and the reliability
measurement through asymptotic exactness of effectivity
indices are analyzed. The reliability of two different error
estimates in the adaptive computation of electromagnetic field
problems is established through the asymptotic exactness of the
computed effectivity indices. From the numerical test results we
find that the gradient of field error estimate has a higher degree
of reliability than the post-processing method of error
estimation.
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