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Abstract- The solution of transient, axisymmetric electromagnetic
fields, coupled to lossy media, are presented. The resulting model
is an interface problem. The continuities of electric and magnetic
fields are the interface conditions. A potential function is defined
to model the problem in the time domain. Appropriate bound-
ary conditions are imposed on the artificial boundary to absorb
the outgoing fields. Finite-difference techniques are used to march
the potential function explicitly in time. Numerical methods are
validated with analytic solutions and then applied to solve more
complicated interface problems.

Introduction

The electrically small loop is of great practical importance in
finding direction and probing magnetic fields. In [1], it was pro-
posed for communication from above ground to observation points
within coal mines. Recently it was also found useful in the NDE
of lossy dielectrics and composite materials [2]. In this paper, we
consider the interactions of a small loop with lossy media. This
type of problems was usually treated by image methods [3] on the
assumption that the bottom is a half space. In many situations,
this requirement cannot be satisfied and image methods do not
work well. Moreover, the exciting current in the loop is not neces-
sarily time-harmonic. One should have a procedure to capture the
transient behavior of the electromagnetic field coupled to the lossy
medium. The direct time-domain nature of the finite-difference
time-domain (FD-TD) technique provides this flexibility (4]

Previous work in FD-TD modeling of the interaction of field
with matter concentrated on using the field variables. In general,
four first-order field equations must be solved. However, by defining
the field variables in terms of potential functions, Maxwell’s equa-
tions can be transformed into two second-order potential equations.
For the problem we consider here, only one potential function is
necessary. In this way, the requirement for computer storage can
be decreased and the solution procedure can be simplified. This
idea was used to solve two-dimensional eddy current problems in
[5]. In this paper we extend it to three-dimensional axisymmetric
field coupling problems.

Formulation of the Problems

Consider a small loop, carrying a current I, placed horizon-
tally over a lossy medium. Using Lorenz’s gauge, the scalar po-
tential V and the vector potential A are defined in the following
way:
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In cylindrical coordinates, with a uniform, ¢-directed current, A
and B have only ¢ components. Also, there is no variation of A,
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E, or V with respect to ¢. From Eq. (2), E = —8A/3t. Thus,
Maxwell’s equations reduce to:
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where A is the ¢ component of the magnetic vector potential. Eqgs.
(3) and (4) are the governing equations, with the source excluded,
in air and in the lossy medium respectively. The interface condi-
tions come from the continuities of tangential electric and magnetic
fields across the interface. The former leads to: 84~ /8t = §At /0,
where the minus and the plus signs represent the potential in air and
in the lossy medium respectively. The latter needs some manipula-
tion. If the normal to the interface boundary is in z direction, it re-
quires: p, A~ /8z = BA* [0z, where p, is the relative permeability
of the lossy medium. Initial conditions are A(p,2,0) = Ai(p,2,0),
and 8A/8t(p, z,0) = 0A;/8t(p, 2,0), where A; is the incident poten-
tial. Since the problem is considered in an open domain, radiation
conditions must be satisfied. In general, these conditions require
that the outgoing fields decay to zero at infinity.

Numerical Implementation

For numerical solution, the unbounded region is truncated
into a finite computational domain. As a result, artificial bound-
aries become necessary and care must be given to these boundary
conditions so that the unbounded surrounding is modeled as accu-
rately as possible. Without these conditions, there will be consid-
erable nonphysical reflection from the boundary into the computa-
tional domain. Different radiation boundary conditions are needed
in different media. In free space, the following condition is used on
a far-field boundary:
where A, is the outgoing component of A. In lossy dielectrics, based
on [7], the following boundary condition is obtained:
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In good conductors, the boundary condition is simply 4, = 0.

The governing equations (3) and (4) have singularities on the
loop’s axis. Our treatment to avoid these singularities is explained
as follows. The vector potential produced by a small loop, under
time-harmonic excitation, is:
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where a is the radius of the loop, k is the wave number, 7' is the
distance of the observation point from the loop’s center, w is the
angular velocity, and 8 is the angle which the position vector makes
with the axis. For the points on the axis, § = 0. Thus the incident
components of A at these points are zero. Also by axial symmetry,
it is obvious that the scattered components of A at these points
cancel each other. Therefore, the condition A = 0 is imposed on
the axis and the sigularities are avoided.

The current source produces incident potential components
throughout the computational domain. The treatment here is to
model the source by the incident potential components at a group
of grid points in air, which are near to and enclose the source.
The FD-TD technique is used to discretize the problem both in
space and in time. Due to the axial symmetry, only the potentials
in the right-half plane need be calculated. The forward-backward
difference scheme in [5]is used to implement the radiation boundary
conditions. Implementation of the interface conditions employs an
idea of fictitious field. Details can be found in [5].

Results

For the first example, the lossy medium is assumed to be a
sheet of aluminum. Fig. 1 shows the mesh and parameters used.
The contour plot of the numerical result is shown in Fig. 2. Since
aluminum behaves close to a perfect conductor, the analytic solu-
tion can be obtained from the mirror image method. The percent-
age root mean square error in a region with vertices (ji,k1), (j2,k1),
(j2,k2), and (j1,k2) is defined in the following way:
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A, is the analytic solution, A, is the numerical solution, and N =
(72 — j1 + 1)(k2 — k1 + 1). Using this definition, €;ms in the whole
computational domain was calculated to be 4.75%.

8

(0, 120) (120, 120)

M. K. S. Unit System

P = By = 1256637 x 10°6

€ =€, =8854x 10712
- 7

Oy =372 10

Ax=3.125x103

a=7.995443 x 104

h =9.994304 x 1074
£=10%

/ Source Region
©,2) -_EL 2) Air
0o |_120

©,-8) Aluminum

(120, 0)

(120, -8)

Figure 1: Mesh and parameters used in the first example. The
parameter ’h’ is the loop’s height.
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Figure 2: Magnetic flux pattern in the first example. (a)A region
of 40 cm by 75 cm with the central area removed. (b)The central
area.

For the second example, the exciting current on the previous
loop has a Gaussian time variation, i. e., I = Joezp(—k2(t - t0)?) ,
where kg is a constant defining the bandwidth and g is the time
instant when the pulse peak occurs. The incident magnetic vector
potential, produced by this current, is calculated from:
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where ka = (/Jia€s . Details of derivation of this formula, in scaled
form, can be found in [7]. The history plots, at P(80, 80), of the
numerical and analytic solutions are shown in Fig. 3(a) and 3(b)
respectively. Both solutions are found in excellent agreement.

For the last calculation, an insulated loop antenna is placed
between two pieces of lossy material. The geometry and useful pa-
rameters are shown in Fig. 4. Image methods do not work in this
situation at all. Thin insulating layers tend to maintain a nearly
uniform current around the small loop, in particular for high loss
surrounding media [8). Therefore, a uniform current is assumed in
the loop and the axisymmetric model is applied. The second in-
terface condition on the top and the bottom interface boundaries
is: p,0A~[8z = At [8z. On the right boundary, it is modified
to: u,8(pA~)/8p = d(pA*)/Bp. At the corners, both requirements
above have to be satisfied. For this general case, the analytic so-
lution cannot be obtained. Furthermore, as best as we know, no
previous result is available for comparison. However, our numerical
result displays a clear view of the field distribution both inside and
outside the lossy pieces, as shown in Fig. 5(a). In the far field,
the loop behaves as if no lossy pieces were present. In the near
field, the strongest field is found just outside the loop’s wire, not
at the loop’s center. These two qualitative features confirm our
calculation. Details near the right half of the upper piece of lossy
material are shown in Fig. 5(b). This shows how an axisymmetric
electromagnetic field is coupled to lossy media.




Conclusions

Axisymmetric electromagnetic interface problems have been
modeled in the time domain, using a potential function. Numerical
methods for the solution of these problems were proposed. Numer-
ical solutions, both transient and time-harmenic, were validated by
the mirror image method. The field distribution, excited by an in-
sulated small loop between two finite cylinders of lossy material,
was also calculated and presented.
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Figure 3: History plots at P(80, 80) in the second example. The
unit used on the horizontal axes is 14.73 ps. (a)Numerical solution.

(b)Analytic solution.




578

(0,60)

(0,15)

o,1)
0,0

My =Wy

£ =€

Sy =45SM
a=28125x10> m

Each piece of lossy material

Air height = 8.75 x 10> m
diametr = 12.5 x 10> m
gap between two pieces

=125x10°m
(10,15) f=10GHz
Lossy '
— aoy

(5,0)\

Figure 4: Mesh and parameters used in the third example. The
grid spacing Az = 0.625 mm.
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Figure 5: Magnetic flux pattern for the third example. (a)A region
of 7.5 cm by 7.5 cm. (b)Details around the right half of the upper
lossy material.




