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Transient Calculations of Two-Dimensional Eddy
Current Problems

MIN EIG LEE, STUDENT MEMBER, IEEE, S. I. HARIHARAN, aAND NATHAN IDA, SENIOR MEMBER, IEEE

Abstract—In this paper we investigate a transient eddy current prob-
lem in two dimensions. The situation describes a transverse magnetic
(TM) field incident on a good conductor. The resulting model is an
interface problem with the continuities of tangential electric and mag-
netic fields being the interface conditions. An approximation of Som-
merfeld’s radiation condition is employed for the absorption of the
high-frequency scattered wave. Finite difference methods are used for
discretization. Instabilities arising from implementing the radiation
condition and implementation of the interface conditions make the
problem harder for numerical treatment. In addition, low-frequency
situations require special treatment of radiation conditions. We pre-
sent our procedures to overcome the difficulties and validate our nu-
merical results with the analytic solutions.

INTRODUCTION

DDY CURRENTS are induced in a conductor when

an electromagnetic field is incident upon it. Calcula-
tion of eddy currents is therefore an interface problem with
the boundary of the conductor being the interface. A com-
mon way of treating these problems is to estimate an ap-
propriate skin depth for the conductor and obtain the as-
sociated fields through an equivalence principle [1]. The
skin depth is obtained by the field penetration into an in-
finite planar slab. However, if the conductor happens to
have a different geometry, the procedure will not work
well. In general, the incident fields need not be time-har-
monic. Pulse sources and surge waves from thunder or
circuit breakers occur in common practice. Therefore, one
must have a procedure to capture the transient behavior
of eddy currents. Along this line, Hariharan and Mac-
Camy [2] solved the problem in the frequency domain
using integral equation procedures. Qur goal is to model
the eddy current problems in an unbounded region and to
solve these problems, in particular, a two-dimensional
problem in the time domain, using finite difference meth-
ods.

FORMULATION OF THE PROBLEM

Consider a conduting cylinder parallel to the z axis. The
incident field has the form: E; = E; (x, y, t)k and H, =
H; (x, y, )i + H;;(x, y, t)j. Maxwell’s equations for
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where pu, €, and o are material properties in both regions
and assumed to be frequency-independent and isotropic.
We assume that ¢ = 0 in air. In addition, the tangential
components of E and H are continuous on the interface
and the scattered E and H both decay to zero at infinity.
Equation (1) suggests the existence of a scalar function ¥
such that H, = 0¥ /dy and H, = —3¥ /dx. Using this
function in the nondimensional form [3], one can obtain
the following scalar problem which is solved in a trun-
cated region:

R 2NN R 2R B 2 o
Tt o in air (4)
F R R v %
e + Ey_z_ =2 - + k2 PR in conductor  (5)
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L is a length for scaling and is on the order of the con-
ductor’s diameter. On the interface, u, ¥~ = u,, ¥ and
0¥~ /dn = 3¥ " /3n, where the minus sign indicates the
exterior field and the plus sign the interior field. Initial
conditions are ¥ (x, y, 0) = ¥;(x, y, 0) and ¥ /dr(x,
v, 0) = 8¥,;/dr(x, y, 0). The radiation condition is

oy,  a¥,
or ot

where

far field

(6)
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where ¥ is the scattered field, k, = wL Vu,€,, and vy is
Euler’s constant. Equation (6) is an approximation to
Sommerfeld’s radiation condition [4]. The distance of a
far-field boundary requires at least one wavelength. It is
not practical for the low-frequency electromagnetic
waves. Therefore, we developed (7) to deal with this case.
Derivation of this condition can be found in [3].

NUMERICAL METHOD

The problem is solved by an explicit finite difference
method. On the radiation boundary, the total field consists
of two components: the incident field ¥; and the scattered
field ¥,. The radiation condition takes care of the scat-
tered field only. The origin is located at the center of the
scatterer. In Cartesian coordinates, (6) has the form

a‘Ilscosf)+a‘I,Ssinf)+%+&:0

dax dy ot 2r

Finite difference methods have difficulties at the corners
of a rectangular radiation boundary. These are due to con-
flicts of the difference formulas at the corners. As a result,
these corners become sources of instability. In this work,
a method using a smooth transition was developed to solve
corner problems. The approach is depicted in Fig. 1. On
the boundary A4, to A,, 3¥,/dx is implemented by a for-
ward-difference formula and d¥,/dy by a backward-dif-
ference formula. On the boundary B, to B,, both are im-
plemented by backward-difference methods. It seems that
implementation of ¥, /3x will conflict at the intersection
point C. But, since the term is multiplied by cos # and its
value is 0 at C, the conflict cannot take effect and corner
problems are avoided.

The interface boundary is approximated by a polygon
whose vertices occupy the regular grids. For example, the
circle I' in Fig. 2(a) is approximated by the polygon I''.
The field computation is then classified into two catego-
ries: exterior and interior. For points on the boundary, if
the grid separation is much larger than the skin depth, the
interior equation is used. Otherwise, the exterior equation
is used. The second interface condition can be changed to

(8)
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(9)
where 0 is the angle between the normal direction and the
x axis. Since cos 6 and sin @ are linearly independent, we
have: ¥~ /dx = ¥ " /3x and 9¥* /3y = d¥* /3y on
the interface boundary. With these, when the field com-
putation involves a point in the other region, an equiva-
lent value at that point can be obtained for calculation.
For example, the equivalent value of ¥~ at B in Fig. 2(b)
can be obtained from

Vi =¥ + (1= 1/p)¥5.

(10)

3141

D. : Forward Difference

N. (x)
D. : Backward Difference el

No Eff B Do
. INo ect
Ay C By
F. D. (x) (x) B. D.
B. D. (y) (y) B. D.
:1 {F. D. (x) O (x) B. D_} By
0 By
Ay N. [$2] » N B_,
F. D. (x) (x) B. D.
F. D. (y) (y) F. D.
A, C B, { N
o
F. D. ()
Fig. 1. Implementation of the radiation condition.
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Fig. 2. (a) Approximating a curve with a polygon. (b) Grid points near the
interface boundary.
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Fig. 3. Mesh size and parameters for the first two situations.

NUMERICAL EXPERIMENTS

Using the previous method, we consider three situa-
tions described herein. The incident fields are assumed to
be plane waves and incident on the left boundary starting
from t+ = 0. For the first two cases, the conductor is a
circular cylinder of aluminum. The grid coordinates and
the parameters used are shown in Fig. 3.

In the first situation, the incident field is ¥, = cos (k, (x
— 1)). A high frequency of 2.387324 x 10® Hz is used.
k,=1,1% = 2.804814 x 10°, and k2 = 1. The numerical
solution in a steady state is shown in Fig. 4. Aluminum
behaves close to a perfect conductor in the high-frequency
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Fig. 4. Contour plot of the numerical solution, f = 2.387324 X 10* He,
result obtained after 10 periods.

Fig. 5. Approximate analytic solution of Fig. 4.

case. The analytic solution for the perfect-conductor
problem was found in [5] and plotted in Fig. 5. Compar-
ing Figs. 4 and 5, we find that both solutions are in a good
agreement. The numerical solution demonstrates a ten-
dency of field penetration into the conductor. Deeper pen-
etration occurs on the illuminated side. The difference near
the artificial boundary comes from the fact that its dis-

tance from the center is not infinite. This tradeoff, how-
ever, makes the numerical implementation on a computer
possible and efficient.
In the second situation, the incident field has a Gaussian
time variation. After scaling, it has the form
v

,-=exp(—ki,(x—t+t0)2). (11)
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Fig. 6. a—Short-pulse source. b—History plot at P, (20, 0). c—History

plot at P, (60, 40). d—Hi

When &, = 1, it becomes a short pulse as shown in Fig.
6 as a. Using (6), we obtain the history plots at P, (20,
0), P,(60, 40), and P3(84, 32) in Fig. 6 as b, ¢, and d,
respectively. These plots display distinctly the incident
waves and the scattered waves. The scattered waves de-
cay with increasing distance from the scattering center.
Since three points are at the same distance from the scat-
tering center, the amplitudes of three scattered waves are
found almost the same. The time interval between the peak
and the valley represents the time delay of the scattered
wave. Comparisons of these delays to those obtained from
geometrical optics are listed in Table I. From this point
of view, the numerical result is found to be satisfactory.
Using our method, some results in the low-frequency
single-conductor case are validated with the analytic so-
lutions in [3]. As an extension of that work, we consider
a low-frequency two-conductor situation here. The con-
ductors are circular cylinders of graphite. p,, = p,, €, =
€4 O =4 X 10*S/m, L = 0.05 m, and a = 0.6544985
X 107" m. The mesh size used is 49 points X 25 points.
The incident field is sinusoidal with a frequency of 6000
Hz. k, = 6.283185 x 107° [2 = 7.539822 x 10°, and
k2, = 1. A grid separation of 0.6544985 X 10~2m, which
is about 1/5 skin depth, is chosen. The near-field con-
dition is imposed on the artificial boundary. The numeri-
cal result after one period is shown in Fig. 7. In this case,
no analytic solution is available for comparison. A similar

story plot at P, (84, 32).

TABLE 1
TIME DELAY OF SCATTERED WAVES
(1 unit = 6.170671 x 107" )

Point Numerical Resuit Geometrical Optics
(20, 0) 98 96
(60, 40) 48 45
(84, 32) 20 16

Fig. 7. Contour plot of the two-conductor case, f = 6000 Hz, result ob-
tained after 1 period.

contour for the power flow density of a two-conductor
transmission line was found in [6, p. 471]. Only the out-
side field was considered there. However, Fig. 7 displays
a clear view of the field distribution near and inside the
interface boundary.
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CONCLUSION

The two-dimensional eddy current problem has been
modeled in the time domain and successfully solved by
explicit finite difference methods. The numerical results
justified by the analytic solutions show that the model is
practical and the numerical treatment is correct. In high-
frequency cases, the far-field condition (6) can be used to
solve practical problems. In low-frequency cases, the
near-field condition (7) is more powerful. It reduces the
mesh size and makes the calculations near and inside the
boundary feasible. Furthermore, the method can deal with
nonsinusoidal fields. In this paper, a short pulse has been
successfully used as the incident field.
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