A PARALLEL ALGORITHM FOR FINITE ELEMENT COMPUTATION

P. Subramaniam

Picker International
595 Miner rd.
Highland Hights, OH. 44143

ABSTRACT

The work presented here deals with the
parallel implementation of finite element analysis
algorithms for computation of electromagnetic
fields. The methods apply equally well to other
areas. The choice of a parallel implementation is
based on the fact that many of the operations and
algorithms used for finite element analysis (FEM)
are essentially parallel or can be parallelized
with a moderate level of effort. The solution of
electromagnetic field problems is particularly
appropriate into the context of parallel machines
because of the open boundary nature of the problem
and the size of the finite element matrices.

INTRODUCTION

The basic stages of the finite element method
have been parallelized and a working implementation
has been tested. The first stage in the solution is
the definition of elemental matrices. The sizes of
these matrices range from as little as 3x3 for a
simple 2-D element to 60x60 or more for 3-D
elements. The solution of the system of equations
is handled by a parallelized Gaussian elimination
algorithm. Postprocessing consists essentially of
calculating field intensities and flux densities as
well as coil impedances.

The essential steps in FEM analysis are:

1. Discretization of the solution domain
2. Calculation of elemental matrices

3. Assembly of a global matrix

4. Solution of the system of equations

5. Post-processing of the results

This work concentrates on steps 2 and 3. Step 1
is a geometrical problem that includes definition
of a geometry, decision on a discretization level,
input of a variety of geometrical data, material
properties etc. This is usually handled through a
graphics preprocessor and is mnot suited for
parallel machines. The interaction of the designer
with the computer at this stage is essential and
therefore, the best approach is to use a graphics
workstation. The input for the FEM program is a
geometric and problem dependent data file. This is
assumed to have been generated for the purpose of
this work.

The
generated
elsewhere

solution of the system of equations
in the FEM process has been treated
[2]. The parallel solution routines

CH2649-2/89/0000/0219$01.00 © 1988 IEEE

219

N. Ida

Electrical Engineering Department
The University of Akron
Akron,

OH. 44325
developed are used in conjunction with the programs
described here.

Finally, the postprocessing step has been left
out because of its highly specialized nature. This
may include calculation of electromagnetic fields
everywhere or, perhaps a single scalar value like
the total energy in the system or the impedance of
a coil.

THE FINITE ELEMENT METHOD
A brief outline of the FEM is given below with

special reference to the following boundary-value
problem:

3%A 3%aA
vagaz * u,g;; +J =0 (x,y)¢G (la)
A=A, on boundaries of G (1b)

where vy, v, are material properties associated
with the solution domain and J is the current in
the domain. In the solution domain, G, the magnetic
vector potential (MVP) A satisfies Poisson’s
equation, while on the boundary B of the solution
region, the MVP or its first derivatives are known.
Here, and throughout this work, reference is made
to the magnetic vector potential. Equation 1
however, applies to a variety of physical
quantities, vector or scalar. Time dependent
problems may also be considered but for simplicity,
these are not discussed here. Also, a 2-D equation
is used. 3-D equations are treated similarly with a
somewhat lengthier process and with larger arrays.

The boundary-value problem in Eq.(l) can be
stated by the following variational problem:

1 3A 3A
F(A)=JG[E[VX(5;)2+uy(5)7]+J.A]dxdy (x,y) ¢ G (2a)

A=A, on boundaries of G (2b)
Minimization of F(A) yields the "best solution"

to the original equation.

The case of known normal derivatives is not
included in Egq. (2). This is a natural boundary
conditions for the functional and need not be
specified.

The solution region is divided into a number of
"finite elements". Here, each element is a
rectangle or a triangle. The elements are assumed
to be interconnected at a number of nodal points

situated on their boundaries. The MVPs at these

nodal points are the unknowns.

The MVP within each element can be defined
using various approximations. There are two basic
methods of defining these approximations. One is
based on products of polynomials in a local system
of coordinates while the other is based on a
polynomial over the element, defined in the system
of coordinates in which the problem is solved [1].

The two methods are quite different and will be
outlined briefly below as this is necessary for
their implementation. To illustrate the process we
use the two simple elements in Fig. 1.

ISOPARAMETRIC FINITE ELEMENTS

The approximation used for the function A in
the interior of the finite element in Fig. la is:

NiA, (3)

1
are a set of shape functions defined at
the four nodes of the elemet and A; are the values
of the unknown function at the same nodes.
Similarly, the derivatives of A can be taken as:
dA(x,y) 4 3N, 8A(x,y) 4 3Ny
ax i=1 dx dy i=1 3y
The functions N; as well as their derivatives
dN;/8x, 8Ni/3y mneed to be known. The standard
method for their calculation is to find them in a
local system of coordinates where they are
extremely simple and then to map them into the
global system of coordinates. The derivatives with
respect to X and y are calculated as:

AGoLy)= 3
x,y)=%

where Nj

Ay (4)

6N‘ 3N1 ax ay
ax 3 ag a¢
o [(31 - 2
Ny aN; if il
ay an dn 8n
where [J] is the Jacobian matrix.
These are now substituted in Eq. (2). In order
to find a solution to the problem, the functional
in (2) is minimized by setting it's first

derivatives with respect to each unknown to zero.
This produces an algebraic equation for each
unknown. Rather than doing this for the whole
solution domain, it is done for each element
separately and the contributions from separate

elements are summed up in a global system of
equations.
To produce the elemental contributions, the

terms in Eq. (2) need to be evaluated. This is done
numerically by Gaussian quadrature.

2 2

2 2 W.W;.f’ N

iZ1 j21 i i (€ ﬂJ) (6)
where W;,W; are weights and £i,n; are quadrature

points. This integration is done locally and then,
using the shape functions, mapped to the global
system of coordinates. For a simple element like

220

this two points in each spatial direction are
sufficient. For more complex elements, more points
may be required.

Implementation on the MPP

Implementation begins by creating three arrays:
SF1,SF2 and SF3 where SF1 holds the shape functions
of the four nodes as four rows of four entries
each. Each column holds the shape function for one
quadrature point. Similarly, SF2 holds 8N,/3¢ in
four columns, each column corresponding to a
quadrature point and each row to a nodal point of
the element. SF3 has the same structure for aN;/dn.

The first step in the computation of the
elemental matrices is the calculation of the
Jacobian (Eq. 5). It is stored in four arrays:
RJAC1, RJAC2, RJAC3 and RJAC4. RJAC1 holds the
first coefficient (RJAC(1,l) for 128 elements
calculated in parallel. RJAC2 contains the second
coefficient (RJAC(1,2)), RJAC3 contains RJAC(2,1)
and RJAC4 contains RJAC(2,2). The determinant of
the Jacobian is calculated and stored in array DETJ
for all elements in parallel. The inverse of the
Jacobian needed in Eq. (5) is now found for all 128
elements by a single divide of the RJAC arrays by
the DETJ array. The results are placed back into
the RJAC(i) arrays.

The derivatives of the shape functions with
respect to x (Eq. (5)) are calculated by
multiplying RJAC1 by the SF2 array, RJAC2 by the
SF3 array and adding the results together. The
calculation of the derivatives with respect to Y is
found as the sum of RJAC3*SF3 and RJAC4*SF3.

The contributions to the elemental matrix in
Eq. (6) are found by parallel array multiplication
of each of the four DNDX(i) array by DNDX(j),
including itself and adding these to the product of
the DNDY(i)*DNDY(j) arrays. The material
properties RXI (vx), RYI (v,) are taken from array
MAT by shifting operations. From this, the 16
contributions to the elemental matrices are found
and entered in a single array (RRR). Each element
takes the first 16 rows on a single column.

The global equation assembly proceeds by moving
each value in the elemental matrix into the global
matrix.

To create the right hand side (RHS) of the
system of equations, the same process is used. As
is clear from Eq. (2), The current density J is
multiplied by the shape functions in SF1 and
integrated using Eq. (6). An elemental column
vector is created and this is later put in a global
RHS vector.

The method outlined can handle up to 128
elements in parallel. It is possible to extend this
to any number but it requires handling multiple

arrays. Since in a FEM analysis, most of the time
is spent in the solution process this was not
considered worth while. There are two problems

associated with this method. One is the need for
sequential insertion in the global matrix. The

second, is in the number of arrays required. Since
the number of arrays is relatively large (about 20
for a four node element), the only elements that
can be handled in this fashion are elements with a
small number of nodes (3 to 6 nodes). Other types

of elements need special considerations. This may
seem limiting but most FEM programs use these
elements. For more complex elements, elemental

matrices can be combined in arrays, with fewer
parallel matrices at each step. Alternatively, the
method of storage in the following section is used.

DIRECT DEFINITION OF ELEMENTAL MATRICES

Another method for the definition of the elemental
contributions is to assume that the distribution

within the finite element is of the following
form [1]
A(x,y)=ax+by+c (7)

If this polynomial is written at the three
nodes of the element in Fig. 1b, we get three
equations in the unknowns a, b and c. By solving
these equations we get:

4

A(xyy)=NiA|+NJAJ+NmAm=ileIA1 (8)

where Ny, N;, Nn are the shape functions given by

Ni(x,y)=(aix+byy+ci)/2D (9a)
Nj (x,y)=(ayx+bjy+cj)/2D (9b)
Nen(X,y)=(amx+bmy+cm) /2D (9¢)
where:

ai=Y;j-Ym aj=yYm-Yi am=yi-Y} (10a)
by =Xm-X; bj=Xi -Xm bm=X - X (10b)
Ci=Xj¥Ym-XmY] Cj=Xm¥1 X1 Ym Cm=XiYj-Xj¥1 (10c)

and xk, yk are the x and y coordinates of node k,
k=i,j,m. D is the area of element ijm.

The expressions in Eq.(9) are substituted into
the functional F(A). Minimization of F(A) yields
a characteristic equation for triangle ijm:

ki k-] Kim Fy
[K]g (A} =(F) [Klg=lkjs kjj Kjm {F)=|F; (11)
Kmi Kmj Fra
where:
kyi=(ajai+biby)/4D ki j=(a;aj+bibj)/4D
kim=(aiamtbibm)/4D kji=(ajai+b;b;)/4D
kjj=(aja;+bjb;) /4D Kjm=(ajam+b;bm)/4D (12)
Kmi=(amai+bmbi)/4D kemj=(ama+bmb;)/4D
Kevn=(ama@m+bmbm) /4D F=F j=Fn=D*J/3
A global equation in the form [K](A}={(F} is

assembled by accumulating the contributions of all
elemental matrices (Eq. (11).

Implementation on the MPP
The parallelization process can be divided into

two phases. In the first phase, the elemental
matrix is computed where the 9 coefficients are

221

calculated in parallel. In the second phase, a
number of elemental matrices are placed in the
global matrix concurrently.

First, the elemental matrix [K]e in Eq.(11)
is rearranged into the following form:

[K]=([Rlgq + [Kl p)/4D (13)
where
ajaj ajaj aijam bib; b‘bJ bibm
(Rlgi=[ajas ajaj ajam| [klgp={bjby byb) bybm| (14)
8m31 amdj Amam brmbi bmbj bmbm
The two matrices in (14) can be further
represented as
[klg1=[PIC[P1)*+[QI([Q])* (15)
where
as ai aj bs by b;
(P]=|a) a; a [Ql=|bj by b; (16)
am am am b bm bm

Based on the expression
now represented as:

in Eq.(10), [P] and [Q]
are
[P]=[P1]-[P2] [Ql-fQ1]-[Q2] (17)
where [P1], [P2], [Ql] and [Q2) are the two parts
of the expressions in Eq. 10a and 10b.

Special consideration 1is given to the
calculation of D, the area of triangle i jm. In
order to perform the divide operation in Eq. (13),

an array, [D] is created
[D]=2([R]-[S]) (18)
where
aiby aibj aiby ajby ajbi ajby
[R]= aib; aibj asb; [S]= ajby ajby ajby (19)
a;b; asb; ab; a;by aj;by ajb;

These two arrays can be further represented in
terms of the coordinates of the three nodal points:
[R]=([R2]-[R3])([S1]-[S3)) (20a)
[$]=([R3]-[R1])([S3]-[s2]) (20b)

where [S1] has x; propagated in all nine locations
and [R1] has yi propagated throughout. Similarly,

{S2] and [R2] contain x; and y; respectively and
[53] and [R3] contain xXm and ymw propagated
throughout.

Finally, the elemental matrix of triangle 1ijm
is obtained by performing one array divide
operation:

[K]e=([K]e1 + [K]ez)/D (21)

At this point, the calculation of the elemental
matrix has been parallelized. However, for the
element used here, each array operation involves
only 9 coefficients. A number of elemental matrices

can be computed concurrently by creating a whole
plane or nearly a whole plane of data before any
array operation is carried out. As an example a
rectangular mesh with 210 triangular elements is
used (Fig. 2). The mesh can be partitioned into 8
sets of elements that have mutually exclusive nodes
as shown. All nodal coordinates of elements in this
set are placed in [P1l], [P2], [Ql], [Q2] in
Eq.(17), and [S1], [S2], (s3], [R1l], [R2], [R3] in
Eq.(20) to form nearly a whole plane of data. These
elements can be assembled in parallel. Once the
elements in a set have been assembled, a new set is
treated until all elements have been assembled.

A Parallel Pascal code has been developed based
on the above parallel algorithm and applied to
perform global equation assembly on the MPP for the
finite element mesh shown in Fig. 2. The total
processing time is 114.47 ms including the time
needed for local nodal numbering. A larger portion
of the total processing time has been spent on
forming whole planes of data. Since the x and y
coordinates are stored in two arrays, considerable
use of fast row and column propagation routines has
been made. Thus, the assembly routines are not
particularly efficient for elements with few nodal
points.

There are some important elements, such as 3D
solid and shell elements, etc., which are extremely

complex and require considerable computer
resources. For these elements, parallel assembly of
the equations is a significant step towards
improving solution times and, in some cases
(boundary integral elements) may be more
significant than the solution of the system of
equations. For these elements, the method outlined
becomes more efficient as the number of nodes per
element approaches 128.

CONCLUSIONS

Two methods for assembly of systems of equations
arising from finite element analysis have been
presented. One is particularly suited for elements
with few nodal points while the other is for
directly defined finite elements. The time involved
in assembly is not considered to be significant
compared with the time needed for solution.

REFERENCES

[1] 0. C. Zienkiewicz, The Finite Element Method in
Engineering, third edition, McGraw-Hill Book
Co., London, 1977.

[2) J. S. Wang and N. Ida, "Parallel algorithms for
direct solution of large systems of equations”,
these proceedings.

K 4(
34 [iR)]
5
el !
=
o 8
X}
1) " 7
B (1) iNM]
a, 6
b. 4
=
Figure 1. Two finite elements. a. Isoparametric 3
element defined in a local system. b. Triangular
element defined in a global system of coordinates. 2
1
. . . 1 2 3 4 5 6 7
Table 1. Processing time on the MPP for matrix .
Figure 2. Elements in a mesh with

assembly for different finite element meshes. Time
is in seconds

No. of No. of Band- Time on
Equat. Elements width the MPP
128 93 63 0.183
256 189 127 1.296
512 441 127 3.488
1024 889 255 14.363

mutually exclussive nodes.

