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Abstract: The Remote Field Effect is used extensively for
testing of thick tubular products where deep penetration into
(primarily ferromagnetic) materials is required [1]. The testing
apparatus consists of two coils, one generating a magnetic field,
the other is used as a pickup coil. The distance between the two
coils is normally large (of the order of two coil diameters). The
operating frequency is low, mormally below 100 Hz. The method
has been assumed in the past to rely on a special effect, and
therefore the name Remote Field Effect. One of the most
remarkable aspect of the method is its equal sensitivity to inner
and outer defects in thick ferromagnetic tubes. This effect could
not easily be explained by direct induction and therefore, many
models have been proposed. The common model used is that of a
wave propagating from the inside of the material to the outside
and then back again [2]. We propose a theoretical model that
shows the effect to be merely that of induction at large distances
[3-5]. The field equations are solved directly using first an
analytic Bessel function approach and then using an integral
approach. Both of these models confirm the basic results
associated with the remote field effect and also include the
velocity of the coils. The models described here are general and
applicable to other induction applications.

1. THEORETICAL MODELS

We establish a system of coordinates which is moving with the
coils. In this system B=B' and E=E'+vxB, where B', E' are the
fields in a stationary reference frame. Introducing a vector magnetic
potential A with Coulomb gauge, namely, VxA=B, V-A=0, into
Maxwell's equation, we obtain the governing equations. These are
written here in cylindrical coordinates since we consider the problem
shown in Fig. 1. The general problem to solve is
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where we will assume that the source is in free space. To solve the
problem the following Green's function is considered
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Fig. 1. General geometry.

With T uniformly distributed in a domain £ (e.g. the coil), the
following solution is obtained.
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where both A and G are bounded at p=pg and p=co. The Green's
function is found by relatively standard means. For this problem, the
Green's function is found through the Fourier transform
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where £ is the transformed z coordinate and
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For a coil extending from p=R; to p=R7 and z=-a to z=+a, the
solution is
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where F and H are functions defined in the various domains of the
problem in terms of modified Bessel functions. These are given as
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Terms P},P2, P3, P4, and Q can be found in [5].

This solution allows calculation of the magnetic vector potential
for any coil or combination of coils and from that the magnetic flux
density or induced voltages in coils may be calculated as
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To calculate the induced voltage V in an identical coil at z=zg, we
write

d 2% d
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g 0 0
for a loop with radius d inside the tube. Performing integration over
the coil area, the total induced voltage in the coil is obtained.

The integrations necessary in Egs. (5) through (8) are performed

numerically but we consider this model to be exact.
The method can also be used to calculate fields and induced voltages
due to axisymmetric defects by assuming the defects to contain a
current which is equal and opposite in direction to the induced current
in the tube without defects.

The second model we use is somewhat simpler and more
numerical in nature. Because of that, it also allows incorporation of
defects in the material so that their effect on the signal may be studied.
In this model, thé tube in Fig. 1 is divided into finite size concentric
rings as shown in Figure 2. Only a finite number of rings is
considered (only those close to and interacting with the coils). Inside
the nth ring we have

J_E-E+vB=-vw-22, vxvxa 9)
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By superposition, the magnetic vector potential is obtained by adding

the contributions of all rings and that of the coil which we denote by
A,. This now becomes
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The solution for the magnetic vector potential is
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Integrating Eq. (10) along a closed line in the k-t ring we have
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Fig. 2. Division of the tube and coils in Fig. 1 into concentric rings of
varying Cross section.

The integration of the vector potential A; in the k-th ring, due'to the
contribution of the j-th rings at a distance rg; from the k-th ring,

represents the flux ®; generated by the j-th element and linked with a
line of the k-th ring. Ny is the Neumann integral of the k-th and j-th

tings, lg=27ry, [j=27r; are the lengths of the k-t and J-th rings, the
total flux @, 4 due to the j-zk ring and linked with the k-th ring is
equal to the flux due to the k-th ring and linked to the j-thting, and is
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where Mj; is the mutual inductance coefficient between the k-th and j-
th element, S; and S are the j-th and k-th element cross-sections,
therefore Eq. (10) becomes '
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Writing Eq. (10) for the n rings in the system results in the following
linear complex system of equations ‘ .
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The various matrices are given as
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Hence, the integral approach modifies the problem solution in the
solution of an equivalent electric network which branches are formed
by self and mutual inductance coefficients and resistances of the rings
in which the tube is subdivided.

The calculation of the inductive coefficients is a crucial point for.
the solution accuracy but, for a non ferromagnetic material analytic
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formulas are available in the literature for accurate computation while
for ferromagnetic materials, the analytic solution described in the first
part of this work can be used.

From the magnetic vector potential, the induced voltage in the
pickup coil is calculated from Eq. (10) by setting J=0. Similarly, the
magnetic flux density can be calculated by calculating the derivatives
of A as in Eqgs. (6) and (7).

This model can used be for electromagnetic field analysis of the
remote field eddy current technique for tubes with axisymmetric
defects by assuming that defects are composed of rings with zero
induced current.

The equivalent network is shown in Fig. 3. The number of
branches remains as for the case without defects. A defect simply
means that the branches (rings) in the defect region are switched off.

II. RESULTS

As examples of the type of results calculable by this method, the
induced voltage and phase are plotted as a function of defect position
in Figs. 4 and 5, for a distance between coils of 1.5 times the coil
diameter. Dotted lines are for an internal axisymmetric defect, solid
line for an identical external defect. The coil moves at a velocity of 5
m/s. Distance is shown with respect to location of defect (zero
distance is at the defect). The results here were calculated using the
geometry in Fig. 1 for a nonferromagnetic tube. It is obvious that
sensitivity is roughly equal for both defects and thus the usefulness of
the remote field effect. The methods presented here are equally
applicable to calculations in ferromagnetic materials and show that the
remote field effect is a simple induction effect but one that only shows
up at low field intensities (far from the source).

CONCLUSIONS

The theoretical models described here were developed for the purpose
of understanding the remote field phenomenon but are general
methods of solution for axisymmetric geometries. A number of other
aspects of testing including frequency variations and infinitely thick
tubes were also analyzed but are not reported here. The methods are
currently being extended to include transient excitation and
ferromagnetic materials.
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Fig. 3. Equivalent network of the integral model.
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Fig. 4. Induced voltage due to an axisymmetric defect.
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Fig. 5. Phase of induced voltage due to an an axisymmetric defect.
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