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High Order Differential Form-Based Elements for the
Computation of Electromagnetic Field

Z. Ren, Senior Member, IEEE,and N. Ida, Senior Member, IEEE

Abstract—The Whitney elements, discrete spaces based on
differential forms, have proven their efficiency in electromagnetic
field computation. However, they are built only in first order. This
paper gives a general description of high order -form (nodal,
edge, facet and volume) elements. Their function spaces and the
assignment of degrees of freedom on the simplexes are analyzed.
General expressions of the basis functions are given. A comparison
of several 2nd order elements is carried out. A procedure for the
generation of hierarchical basis of -form element is provided.

Index Terms—Differential forms, edge elements, finite element
modeling, high order elements.

I. INTRODUCTION

T HE CALCULUS of differential forms is a useful tool to
describe physical phenomena such as electromagnetics

[1], [2]. It constitutes a natural framework for the description of
electromagnetic theory and has numerous advantages compared
to the conventional vector algebra. The appearance of Whitney
elements (first order differential form-based elements) [3]
was a considerable advance in the finite element computation
of electromagnetic fields. Whitney elements consider the
differential forms as degrees of freedom. Their advantages are
principally their capacity of allowing natural discretization of
the systems with appropriate continuity of scalar and vector
variables. However, Whitney elements are built only in first
order. To increase the accuracy of interpolation, high order dif-
ferential form based elements must be introduced. The theory
of high order edge (curl-conformal) and facet (div-conformal)
elements was advanced in the early 80’s in [4]. Unfortunately,
in this reference, no specific vector basis function was reported.

Further investigation has been carried out in recent years by
different researchers [5]–[10]. Most of those works focus on the
high order edge element. Few studies on the link between nodal,
edge, facet and volume elements (differential form based ele-
ments of different degrees) were carried out. In this paper, we
give a general description of high order differential form based
elements starting from De Rham’s complex. Analysis of their
function spaces and of the assignment of degrees of freedom
(D.O.F.) on each simplex will be reported. General expressions
of basis functions fulfilling the conformity requirement will be
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given. Several 2nd order edge elements will be compared. It
should be noted that it is not our objective to give concrete ele-
ment bases, but through this analysis, to try to provide a general
procedure to generate those bases.

We adopt in this paper the term “differential form based el-
ements” or “ -form elements” rather than the classical names
“nodal, edge, facet or volume elements” which are originally
related to where the D.O.F. are assigned, but no longer appro-
priate for high order cases. Because, for example, in the case of
high order 1-form elements, the D.O.F. are assigned not only to
edges but can also be to facets and volume. Other suitable terms
might be “tangential vector element” instead of “edge element”
and “normal vector element” instead of “facet element.”

II. DIFFERENTIAL FORMS AND DE RHAM’S COMPLEX

Differential forms are expressions on which integration op-
erates [1]. A differential form of degree, or a -form, is an
expression where the integral is performed over a manifold of
dimension in a space of dimension, i.e. the integrand of a
-fold integral in an -dimensional space. In electromagnetism,

according to the dimension of the manifold on which the vari-
able is integrated, a scalar potential is a 0-form; the circulation
of a vector potential or a field intensity (electric or magnetic)
along a small segment is a 1-form, a flux (or current) across a
small area is a 2-form and charges contained in a small volume
is a 3-form.

Differential forms operate in exterior algebra. Exterior
(wedge) product of a -form and a -form produces a

-form with the skew symmetry property:
. Two other operators permit transfor-

mation of a differential form of one degree to the other. One
is the exterior derivation “.” Application of this operator to
a differential form leads to a form of higher degree. In three
dimensions, it replaces the familiar “grad,” “curl” and “div”
operators of vector algebra. The other operator is the star
(Hodge) operator “.” It transforms a -form to an – -form,
where denotes the dimension of space.

Let be the set of -forms defined on an -dimen-
sional manifold , we have . This prop-
erty can be represented by a sequence called De Rham’s com-
plex [2]. The case of is shown in Fig. 1.

A form is said to be closed if . A form is said
to be exact if there exists a form(of one degree lower) such
that . Since , every exact form is closed.
Can we also say “every closed form is exact?” According to
the Poincare lemma, the answer is positive for a manifold
not too complex (topologically trivial domains). But in gen-
eral, the answer is negative. Let be the set of closed
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Fig. 1. De Rham’s complex in the case of 3 dimensions.

-forms, be the set of exact -forms. We have in
general . The complement of in

is called De Rham’s th
cohomology group. Dimension of depends on the topology
of the manifold [11]. (for ) vanishes on a trivial
manifold.

In order to model correctly and naturally the spaces of dif-
ferential forms of different degrees, suitable elements must be
adopted. These elements can be derived with the help of the cal-
culus of differential forms, notably the De Rham’s complex.

III. FUNCTION SPACES OFDIFFERENTIAL FORM-BASED

ELEMENTS

Let be a 3-simplex (tetrahedron), the function
space of order -form elements constructed on. can be
decomposed into a null space of differential operator
(set of closed forms) and a range space of differential operator

: . The tetrahedron is topologically
trivial. The closed forms are exact forms. This property is shown
with the help of De Rham’s complex in Fig. 2. It can be seen that
the differential operator is an isomorphism of onto and

.
The element must fulfill the following requirements:

model correctly the null space of the differential operator
and be complete to order in the range space under the
differential operation. In order to define the number of D.O.F.
of -order -form element , we analyze the dimension of
subspaces and . We denote by the linear space
of polynomials on with degree up to .

The 0-form element space is spanned by-order polyno-
mials: . Its dimension is . The
space is a constant field with the dimension 1. The space
is spanned by order polynomials with nonzero gradients. Its
dimension is obviously . The dimen-
sion of can also be determined in the following way: is
complete to order under the grad operation. The number of
D.O.F. of a order polynomial vector is .

Fig. 2. De Rham’s complex showing the relation betweenp-form elements.

The curl free condition gives
constraint relations. Hence, the dimension of the

space is .
The space is a gradient field. Its dimension is

, equal to that of . The space is a curl field of
order polynomial. It must be complete to order under the
curl operation. The number of D.O.F. of a order poly-
nomial vector is . There are

relations to ensure the divergence free condi-
tion. Hence, the dimension of the spaceis .
The total number of degrees of freedom of the 1-form element
space is .

The space is a curl field which has the same dimension as
: . The space is a divergence field of

order polynomial. It must be complete to order under the
div operation. The number of D.O.F. of a order polynomial
scalar field is . This defines the dimension of
the space . The total number of degrees of freedom of the
2-form element space is .

The 3-form element space has the same dimension as
and is spanned by polynomials of order up to . The number
of D.O.F. of is .

The dimensions of spaces , and of
-form elements are summarized in Table I.
Let us introduce the following spaces defined over:

linear space of homogenous polynomials of degree

grad

These spaces are related by the Helmholtz decomposition:
. Their dimensions are, respectively,

and
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TABLE I
DIMENSION OF FUNCTION SPACES OFQ-ORDERP -FORM ELEMENTS

Let us define further:

According to De Rham’s complex, the curl operator is an iso-
morphism of onto , and

.
Following the above definitions, the null spaces of-form

elements are decomposed as :

Where is the subspace of which contains gradient
vectors and is the complement of in con-
taining nonzero curl vectors. Consequently, the function spaces
of -form elements have the decomposition :

IV. COMPARISON WITHCOMPLETEQ-ORDERELEMENTS

The previously given function spaces of -order differen-
tial form-based elements are complete to order under the
differential operation but incomplete themselves to-order (ex-
cept for 0-form elements), because their dimensions are smaller
than that of complete-order vector or scalar basis. The reason
is that the null spaces are only complete to

order.
To get complete -order elements, it is enough to complete

the null space to -order by adding, respectively, to ,
to and to . Let us denote by the function spaces

of complete -order -form elements, we have the following
relationships between and :

It should be noted that and are the family of vector
elements given in [12].

Since is a gradient space, adding to the function space
of 1-form elements results only in additional irrotational func-
tions. This will not contribute to the modeling of range space of
the curl operator and there will be no influence on the accuracy
of rotational fields.

Similarly, is a curl space. Adding to the 2-form ele-
ments space results only in additional solenoidal functions and
has no influence on the accuracy of divergence fields.

These observations show that the 1-form (or 2-form) element
of complete order allow a better approximation of the vector
field but don’t affect the accuracy of the curl (or div) field. In
the case where we are mostly interested in the curl field, for ex-
ample in the case of magnetostatic field using the vector poten-
tial formulation, the use of incomplete-order element is more
economical and hence preferable.

We can also note that, if we take a gradient space greater than
but smaller than , we get elements with the number of

D.O.F. smaller than but greater than . The
element given in [10] is such an example.

In this paper, we are interested only in elements of incomplete
-order . The analysis is similar for the case of complete
-order elements.

V. ASSIGNMENT OFDEGREES OFFREEDOM

The number of D.O.F. of-form elements has been given. In
this section, we will answer the question how to determine the
number of D.O.F. to be assigned to-simplex ( : vertex,

: edge, : facet and : volume).

A. 0-Form Element (Nodal Element)

When the order of 0-form element is upgraded from to
, the number of D.O.F. to be added to an edge is 1, to

a facet is , to a volume is , and the total
is . Let us denote by : the spaces of polynomials of
degree on an -simplex which vanish on
the boundary, . We have:
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The D.O.F. of -order nodal element to be as-
signed to vertices, edges, facets and volume are, respectively,

, ,
, , so

that the total is .

B. 1-Form Element (Edge Element)

In order to determine the number of D.O.F. of 1-form element
on each simplex, we must know the dimension of gradient and
curl spaces on the simplexes. Let us denote by

: the linear space of polynomials defined on with
degree up to .

: the 1-form space of polynomials with degree up to
on a -simplex which vanish on

the boundary (1-vectors with zero
tangential components on ).

: the subspace of containing exact (closed)
1-forms (vectors which are gradients of a polyno-
mial of degree ).

: the complement of in (vectors having
nonzero curl).

We have , and
with

, and
. Hence, the dimension of can be

derived: , and
.

Otherwise, according to De Rham’s complex, the grad oper-
ator is an isomorphism of onto , we have

. Referring to results of the previous subsection, we
have , , and

.
The Helmholtz decomposition states that .

Hence , i.e. ,
and

. The space of 1-form element is decomposed to

Consequently, the number of D.O.F. to be assigned
on a -simplex is . Results are
shown in Table II where the D.O.F. of [equal to

] are excluded from edge D.O.F.
in the range space and added to the null space.

C. 2-Form Element (Facet Element)

The number of D.O.F. on facet and volume is determined in
a similar way. Let us denote by

: the 2-form space of polynomials with degree up to
on and having zero value on

(2-vectors in having zero normal component on
).

: the subspace of containing exact (closed) 2-forms
(vectors which are curls of vector polynomial of degree

).

TABLE II
ASSIGNMENT OFD.O.F.OF 1-FORM (EDGE) ELEMENT

: the complement of in (vectors having nonzero
divergence).

We have , and hence,
,

.
Since the curl operator is an isomorphism of onto ,

we have , i.e.
and .

Otherwise, . Hence, and
.

According to the previous analysis,
. Consequently, the number of D.O.F. to

be assigned on a-simplex is . Results
are shown in Table III where the D.O.F. of [equal to

] are excluded from facet D.O.F. in the
range space and added to the null space.

In the case of (volume element), all D.O.F. are assigned
to volume. No special analysis is needed.

Finally, the assignment of D.O.F. of-form elements to
-simplex is summarized in Table IV.
The analysis of this section shows clearly the link of-form

elements on each simplex, in particular the link of null spaces
of -form element to the range spaces of-form element
under the differential operator. This analysis is helpful, not only
for the generation of basis, but also to the application of gauge
condition when necessary. For example, in the case of gauging
a vector potential formulation, it shows clearly what is the null
space to be removed.

The basis functions of-form elements must be defined in
such a way that the conformity and the unisolvence conditions
are satisfied [4], i.e. each element must match the corresponding
continuity condition of -form field across the interface of ele-
ments, and the shape functions must be independent to provide
an unique solution of the field equation. The following section
gives the general expressions of the basis functions that fulfill
the conformity requirement.

VI. GENERAL EXPRESSIONS OFBASIS FUNCTIONS

Let be barycentric coordinates of a pointwith respect
to a node in . Let ,

, , , and
, , respectively, polynomials

of variables ’s with degree up to – . They will be further
distinct with different superscript or/and subscript when used in
different expressions.



1476 IEEE TRANSACTIONS ON MAGNETICS, VOL. 36, NO. 4, JULY 2000

TABLE III
ASSIGNMENT OFD.O.F.OF 2-FORM (FACET) ELEMENT

TABLE IV
ASSIGNMENT OFDEGREES OFFREEDOM

A. 0-Form Element (Nodal Element)

The basis functions of 0-form element take the following
general expressions on each simplex:

0-form element ensures continuity on the interface of ad-
jacent elements. It belongs to the Hilbert space:

(grad) .

B. 1-Form Element (Edge Element)

We introduce first an operator , which rotates indices such
that , and

, , etc. The basis functions of on each
simplex are:

Since is a 0-form, the differential operator can be
read grad. This element satisfies the 1-form conformity
(curl-conformal), i.e.,
curl . The tangential components of the vector
field are continuous on the interface of adjacent elements.

C. 2-Form Element (Facet Element)

Following functions spans the 2-form element :

This element is conforming in ,
div . The normal components of the vector field
are continuous on the interface of adjacent elements.

D. 3-Form Element (Volume Element)

Finally, the basis functions of 3-form element are
. They

are piece-wise continued functions [ order polynomials].
The coefficients of polynomials in the above expressions

must be determined in order that the functions are linearly
independent and model correctly the null and range spaces of
the differential operator on each simplex. The coefficients can
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Fig. 3. Comparison of convergence behaviors of various elements.

be determined in various ways and this leads to different types
of elements [5]–[10].

VII. COMPARISON OFSOME 2nd ORDER1-FORM ELEMENTS

In the case of 2nd order 1-form element, we assign 2 D.O.F.
per edge and 2 D.O.F. per facet. Different types of elements have
been developed [5], [8]–[10]. We have applied them in a formu-
lation in terms of magnetic vector potential to solve magneto-
static problems [13] and in a combined magnetic vector poten-
tial and electric scalar potential formulation to compute eddy
currents [14].

In the magnetostatic application [13], we have shown that,
the field distributions obtained with all elements are nearly iden-
tical. However, the conditioning of the matrix system, and hence
the convergence behaviors are very different. The best conver-
gence is obtained by Lee’s element [5]. In addition Lee’ element
has the advantage of being hierarchical [6].

When applying these elements to solve eddy current prob-
lems, Lee’s element converges still more quickly than others do.
However, Lee’ element suffers the asymmetry problem of the
facet basis functions: choosing differently two facet basis func-
tions among three available leads to different modeling spaces
and has a harmful influence on numerical results. In order to sur-
mount this drawback but still keep the hierarchical property, we
introduced a new basis [14] in modifying the facet basis func-
tions. This basis stays intact with the random choice of facet
basis functions, and keeps the good conditioning of the matrix
system and the hierarchical property. A comparison with other
elements in eddy current application is shown in [14].

This element is also applied for solving magnetostatic prob-
lems. In the case of a magnetic circuit problem (see definition
of the problem in [13]), the field distribution is almost identical
to that of other elements. The convergence behavior is shown in
Fig. 3, where the curves and correspond, respec-
tively, to the elements given in [5], [8]–[10] and our proposed
one [14]. It can be seen that our element has a good convergence
behavior as Lee’s.

These comparative studies show that, once we model cor-
rectly the null and range space of the curl operator, all ele-
ments provide same accuracy of results. But the conditioning
of their matrix system is very different. So the conditioning of
the system must be taken as one of the important criteria when
constructing element bases.

VIII. PROCEDURE FOR THEGENERATION OFBASES

The above analysis showed the link between differential
form-based elements of different degrees and of different order.
This link illustrates the inclusion property of-form elements
and is helpful for the generation of their bases.

Taking independent functions described in Section VI will
form the interpolatory basis. However, recent studies showed the
advantages of hierarchical bases [6]. The hierarchy means that
the basis functions of the high order elements include all basis
functions of the spaces of lower order elements. This property
allows mixing of different order of elements in the same mesh
without the difficulty of matching field continuities. It is helpful
for mixed - and -version adaptive mesh generation or for the
development of adaptive multigrid solvers [15]–[16]. Since the
spaces of higher order elements include those of lower order el-
ements, the generation of hierarchical bases can be conveniently
realized.

For example, the hierarchical basis of 1-form element can be
generated using the following procedure. Supposing the 0-form
element has been generated with a hierarchical basis [17] and
let the first order 1-form element be the Whitney edge ele-
ment. We denote by and ,

, respectively, spaces of basis functions over the
-simplex of 0-form and 1-form elements when the basis is up-

graded from the order to . , ,
are hierarchical basis functions of 0-form element generated on
edge, facet and volume, when the order is upgraded from
to .

A general procedure for the generation of hierarchical basis
of -order 1-form element is, for to ,

– Taking 1 function which is differential (gradient) of
on each edge to generate .

– Taking functions, which are differential of
on each facet to generate .

– Adding functions of non zero curl
on each facet to

complete the facet basis.
– Taking functions which are

differential of to generate .
– Adding nonzero curl functions

to complete
the volume basis.

A basis of 1-form element of the order up to 3 generated with
this procedure is shown in Table V. The number before the func-
tion indicates the number that take the same form of the basis
function in rotating indices on a simplex. Application of this
basis in the case of 2nd order is given in [14] and reported in the
previous section.

A good element basis must lead to a good conditioning of
the matrix system. The coefficients of polynomials in the basis
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TABLE V
A HIERARCHICAL 1-FORMQ-ORDER(UP TO 3) ELEMENT BASIS

functions must be determined in order that the matrix condi-
tioning is optimal. A good matrix conditioning requires the ma-
trix to be diagonally dominant. The ideal case is to have the basis
functions mutually orthogonal. However in practice, it is almost
impossible to get such an ideal basis. What we can try is to make
them as orthogonal as possible. It should be pointed out that the
orthogonality is problem dependent, i.e. the shape of elements,
the material property of the problems. It is difficult to provide
a general rule to realize an orthogonal basis and further investi-
gation has to be carried out.

IX. CONCLUSIONS

With the help of De Rham’s complex, the null spaces and the
range spaces of the differential operator of-form elements as
well as their link are clearly shown. After a complete analysis of
the assignment of D.O.F. on each simplex, the general expres-
sions of -form elements are given. The determination of their
coefficients varies and this leads to different kind of elements.
Comparison of several 2nd order 1-form elements shows that
even though they provide the same accuracy of results, their ma-
trix conditioning is very different. Utilizing the inclusion prop-
erty of the spaces of-form elements of different degrees and
orders, a procedure for the generation of the hierarchical basis is
given. Determination of coefficients in order to have an optimal
matrix conditioning needs further investigation.
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