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High Order Differential Form-Based Elements for the
Computation of Electromagnetic Field
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Abstract—The Whitney elements, discrete spaces based ongiven. Several 2nd order edge elements will be compared. It
differential forms, have proven their efficiency in electromagnetic should be noted that it is not our objective to give concrete ele-

field computation. However, they are built only in first order. This  ant hases, but through this analysis, to try to provide a general
paper gives a general description of high orderp-form (nodal, d t te th b
edge, facet and volume) elements. Their function spaces and theProceaure to generate those bases.

assignment of degrees of freedom on the simplexes are analyzed. \We adopt in this paper the term “differential form based el-
General expressions of the basis functions are given. A comparisonements” or ‘p-form elements” rather than the classical names

of several 2nd order elements is carried out. A procedure for the “nodal, edge, facet or volume elements” which are originally
generation of hierarchical basis ofp-form element is provided. related to where the D.O.F. are assigned, but no longer appro-
Index Terms—Differential forms, edge elements, finite element priate for high order cases. Because, for example, in the case of

modeling, high order elements. high order 1-form elements, the D.O.F. are assigned not only to
edges but can also be to facets and volume. Other suitable terms
I. INTRODUCTION might be “tangential vector element” instead of “edge element”

and “normal vector element” instead of “facet element.”
HE CALCULUS of differential forms is a useful tool to
describe physical phenomena such as electromagnetics || pDirrFERENTIAL FORMS AND DE RHAM'S COMPLEX
[1], [2]. It constitutes a natural framework for the description of . ) o i
electromagnetic theory and has numerous advantages compardyerential forms are expressions on which integration op-
to the conventional vector algebra. The appearance of Whitrfes [1]- A differential form of degreg or ap-form, is an
elements (first order differential form-based elements) [§kPression where the integral is performed over a manifold of
was a considerable advance in the finite element computatff’€nsionp in a space of dimension, i.e. the integrand of a
of electromagnetic fields. Whitney elements consider tg0ld integralinam-dimensional space. In electromagnetism,
differential forms as degrees of freedom. Their advantages &f&°rding to the dimension of the manifold on which the vari-
principally their capacity of allowing natural discretization oftP1€ iS integrated, a scalar potential is a 0-form; the circulation
the systems with appropriate continuity of scalar and vectBf @ vector potential or a field intensity (electric or magnetic)
variables. However, Whitney elements are built only in firg/ong @ small segment is a 1-form, a flux (or current) across a
order. To increase the accuracy of interpolation, high order dfffall area is a 2-form and charges contained in a small volume
ferential form based elements must be introduced. The thedfy 3-form. , _ ,
of high order edge (curl-conformal) and facet (div-conformal Differential forms operate in exterior algebra. Exterior
elements was advanced in the early 80's in [4]. Unfortunate?,vedge) product of g-form « and ag-form v produces a
in this reference, no specific vector basis function was reportéd.  9)-form (p + ¢ < n) with the skew symmetry property:
Further investigation has been carried out in recent years By ¥ = (—=1)"?v A w. Two other operators permit transfor-
different researchers [5]-[10]. Most of those works focus on tfjgation of a differential form of one degree to the other. One
high order edge element. Few studies on the link between nod&the exterior derivationd.” Application of this operator to
edge, facet and volume elements (differential form based efedifferential form leads to a form of higher degree. In three
ments of different degrees) were carried out. In this paper, \JEnensions, it replaces the familiar “grad,” “curl” and “div*
give a general description of high order differential form basétPerators of vector algebra. The other operator is the star
elements starting from De Rham'’s complex. Analysis of theffi0dg€) operator<.” It transforms g-form to an(r—p)-form,
function spaces and of the assignment of degrees of freed¥fff"en denotes the dimension of space. _
(D.O.F.) on each simplex will be reported. General expressions-€t D7 (M) be the set op-forms defined on am-dimen-

of basis functions fulfilling the conformity requirement will beSional manifold\/, we haveiD? (M) c D#**(M). This prop-
erty can be represented by a sequence called De Rham’s com-

plex [2]. The case of = 3 is shown in Fig. 1.
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Fig. 2. De Rham'’s complex showing the relation betweeorm elements.
Fig. 1. De Rham’s complex in the case of 3 dimensions.

The curl free condition givegg— 1)(2¢+5)/6(dim(P,_»)* —
p-forms, BP(M) be the set of exacp-forms. We have in dim(P,_3)) constraint relations. Hence, the dimension of the
generalBP(M) C ZP(M). The complement oB?(M) in spaceY,? is (¢ + 1)(q + 2)(g +3)/6 — 1.

Z°(M), H?(M) = Z»(M)\B*(M) is called De Rham'sth  The spaceZ! is a gradient field. Its dimension {g* + 64 +
cohomology group. Dimension di” depends on the topology 114) /6, equal to that o,. The spacé’} is a curl field ofg
of the manifold [11]. H? (for p > 0) vanishes on a trivial order polynomial. It must be complete go- 1 order under the
manifold. curl operation. The number of D.O.F. ofga— 1 order poly-

In order to model correctly and naturally the spaces of difromial vector isg(q + 1)(q + 2)/2. There arey(q — 1)(q +
ferential forms of different degrees, suitable elements must p)a/ﬁ(dim(pq_Q)) relations to ensure the divergence free condi-
adopted. These elements can be derived with the help of the ¢@)n. Hence, the dimension of the spégbis q(q+1)(2q+7)/6.
culus of differential forms, notably the De Rham’s complex. The total number of degrees of freedom of the 1-form element

spaceW} is q(q + 2)(q + 3)/2.

The space&? is a curl field which has the same dimension as
[ll. FUNCTION SPACES OFDIFFERENTIAL FORM-BASED V! (2¢°+9¢%+7¢) /6. The spac&’? is a divergence field of
ELEMENTS order polynomial. It must be complete go- 1 order under the
div operation. The number of D.O.F. ofja- 1 order polynomial

» scalar field isg(¢ + 1)(g + 2)/6. This defines the dimension of
space of; orderp-form elements constructed 6if. W7 canbe ¢ space. The total number of degrees of freedom of the

?eior?ploseo(lj i]pto a)nulldspace of differentfiz:\]:_f(f)peraf;?fs?’) t2-form element spac#’?2 is q(q + 1)(g + 3)/2.
set of closed forms) and a range space of differential operato , ,
gesp P The 3-form element spad&? has the same dimension X3

3y- _ . .
YP(5°): Wy = Zy @ Y7. The tetrahedron is topologically 5 js spanned by polynomials of order ugte 1. The number
trivial. The closed forms are exact forms. This property is show} 5 5 E ofi3 is dm(P,_1) = qlg+1)(q+2)/6

.O.F. —1) = .

. ’ . H q
with t.he help of De Rham S cqmplex in Flg. 2.ltcan E)Elseen that-l-he dimensions of spacéﬁ;(S?’), Y'qp(sl’)) and W(f(S?’) of
the differential o.perator is an isomorphismagf ontoY”~* and p-form elements are summarized in Table I.

dim(Y?~') = dim(Z?).

] ) ) Let us introduce the following spaces defined ogér

The elementW? must fulfill the following requirements:
model correctly the null spacg? of the differential operator . .
and be complete tg— 1 order in the range spadé’ under the P,: linear space of homogenous polynomials of degree
differential operation. In order to define the number of D.O.F. G, = {U € (P,)lv=grads, ¢ € Pq+1} ;
of g-order p-form elementW?, we analyze the dimension of ~
subspaceg? andYé’. We denote byP,(S?) the linear space  S; = {U €(L)lr-v= 0}-
of polynomials onS* with degree up t@.

The 0-form element spad&; is spanned by-order polyno- These spaces are related by the Helmholtz decomposition:
mials: W = P,. Its dimension iq +1)(¢+2)(q+3)/6. The (P)® = G, @ S,. Their dimensions are, respectively,
spaceZ, is a constant field with the dimension 1. The spage
is spanned by order §0Iyn())(mials)\(/vith n)c/)nzero gradients. Its dim(P,) = (g + 1)(qg+2)/2,
dimension is obviouslyg+1)(¢+2)(¢+3)/6 — 1. The dimen- . -
sion ofY;? can also be determined in the following way" is dim(Go) = dim(Fy1) = (¢+2)(¢+3)/2,
complete ta;— 1 order under the grad operation. The number &nd N
D.O.F. of ag — 1 order polynomial vector ig{q+ 1){(q+ 2)/2. dim(S,) =q¢(q+ 2).

Let S® be a 3-simplex (tetrahedron)y’?(5?) the function
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TABLE |
DIMENSION OF FUNCTION SPACES OF()-ORDER P-FORM ELEMENTS

Spaces YA Y% WS
elements (null space of d) | (range space of d) (function space)
0-form 1 (a+1Xg+2Xg+3)-6 | - (g+1)(g+2)q+3)
6 6
1-form | (q+1)(g+2)(g+3)-6 | a(g+1)(2g+7) a(a+2)(g+3)
6 6 2
2-form a(g+1)2q+7) alg+1(g+2) q(g+1)g+3)
6 6 2
3-form q(gt+1)(q+2) q(q+1X(q+2)
6 } 6
Let us define further: It should be noted thai\f(;L and Nq2 are the family of vector
B B B elements given in [12]. }
C, = {v € (P)3v = curlu, u € Sq+1} Sinced, is a gradient space, adding, to the function space

of 1-form elements results only in additional irrotational func-
According to De Rham’s complex, the curl operator is an istons. This will not contribute to the modeling of range space of

morphism ofS ;1 onto C, anddim(C,) = dim(S,41) = the curl operator and there will be no influence on the accuracy
(¢ + (g +3). of rotational fields.
Following the above definitions, the null spacespeform Similarly, Oq is a curl space. Adding7q to the 2-form ele-
elements are decomposed(as> 2): ments space results only in additional solenoidal functions and
. has no influence on the accuracy of divergence fields.

Zy =D =1, Z) =27y ., These observations show that the 1-form (or 2-form) element
Zi =G =3, Zy =21 ®Gq1=0Cq1, of complete order allow a better approximation of the vector
Z2 =Cy =3, Z2=7 @ Cyo1 =Cy_y, field but don't affect the accuracy of the curl (or div) field. In
73 =Py =1, Z3=7 @ P =P,_,. the case where we are mostly interested in the curl field, for ex-

ample in the case of magnetostatic field using the vector poten-
WhereG, 1 is the subspace ¢, )* which contains gradient tial formulation, the use of incompleteorder element is more
vectors and’,_; is the complement of?,_; in (P,_;)® con- economical and hence preferable.
taining nonzero curl vectors. Consequently, the function spaced/Ve can also note that, if we take a gradient space greater than

of p-form elements have the decompositign> 2): G,—1 but smaller thar7,, we get elements with the number of
B D.O.F. smaller thadim(N?) but greater thadim(W?). The
WP =rpy, Wo=w_ eP, =P, element given in [10] is such an example.
Wi =Gy S, Wl=wl & Gy1® Sy, In this paper, we are interested only in elements of incomplete
W2=Coa B, W2=W2, & C,1®P,_y, q-order WP'. The analysis is similar for the case of complete
W3 =P, W3=W3, & Bi=P,_,. g-order elements.

V. ASSIGNMENT OFDEGREES OFFREEDOM

IV. COMPARISON WITH COMPLETE Q-ORDER ELEMENTS .
The number of D.O.F. gf-form elements has been given. In

The previously given function spaclg} of g-order differen-  thjs section, we will answer the question how to determine the
tial form-based elements are completgyte 1 order under the nymbper of D.O.F. to be assignedtsimplexs™ (» = 0: vertex,
differential operation but incomplete themselveg-order (ex- , — 1: edge, = 2: facet and- = 3: volume).
cept for 0-form elements), because their dimensions are smaller
than that of complete-order vector or scalar basis. The reasoR  o_rorm Element (Nodal Element)
is that the null space&?(p = 1, 2, 3) are only complete to )

q — 1 order. When the order of 0-form element is upgraded frgm 1 to

To get completej-order elements, it is enough to completéd (¢ = 2). the number of D.O.F. to be added to an edge is 1, to

the null space? to g-order by adding, respectivelg, to 7}, @ facetis¢—2), toavolume igg — 2)(¢ - 3)/2, and the total

¢, to Z(? andﬁ’q to Z;;’- Let us denote byv? the function spaces is dim(F,). Let us denote by’ the spaces of polynomials of

of completeg-order p-form elements, we have the followingd€9r€€z On anr-fimplexS" (r =0, 1,2, 3) which vanish on
relationships betweeN? andW2: the boundarygS™ (r = 1, 2, 3). We have:

1 _ 1 2 _ 2 3 _ 3 0 __ _ 0 1 2 3
N =WleG, N=w2eC, N:=W>ePR, W0=P,=4xPP®6x P ®4x P2 P
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The D.O.F. ofg-order nodal elementV(S%) to be as- TABLE I
signed to vertices, edges, facets and volume are, respectively, ASSIGNMENT OFD.O.F.OF 1-FORM (EDGE) ELEMENT
4xdim(P)) = 4x1,6xdim(P}) = 6x(g—1),4xdim(P7) = :
4% (q—2)(qg—1)/2,dim(P2) = (¢—3)(q—2)(¢ —1)/6, s0 Spaces|  Z4'(5%) = Gqu A CHERN Wq'(5%)
that the total iS( g+ 1)( g+ 2) ( g+ 3) /6. D.OF. on (null space of d)  {(range space of d) (function space)
Edges 6x(g-1)+3 6x1-3 6xq
B. 1-Form Element (Edge Element) Facets 4x(q-1)(g2)2 | 4x(q-1)q+2)72 4x(q-1q
In order to determine the number of D.O.F. of 1-form eleme __Yome | @D@2@36 | @aDQa3)/6| @2aDe2
on each simplex, we must know the dimension of gradient a Total | (q+1)(a+2)(@+3)/6-1| aq(a+1)2q+7)/6 | q(q+2)g+3)2

curl spaces on the simplexes. Let us denote by
P,(5™): the linear space of polynomials defined §h with
degree up tq. T;: the complement of; in V" (vectors having nonzero
Uy the 1-form space of polynomials with degree up to divergence).
q on ap-simplexS”(r = 1, 2, 3) which vanish on ~ We haveP,(5?) = V2, (P,(5%))® = 4x V2@V and hence,
the boundan®S™(r = 2, 3) (1-vectors with zero dim(V?) = (¢4 1)(q+2)/2,dim(V?) = (¢ — 1)(g+ 1)(g+

tangential components @t™). 2)/2.

Gy the subspace ofU] containing exact (closed) Since the curl operator is an isomorphismsgf, ; onto C¢,
1-forms (vectors which are gradients of a polynowe havedim(C}) = dim(S},,), i.e.dim(C?) = ¢(q + 3)/2
mial of degree; + 1). anddim(C?) = (¢ — 1)q(2q + 5)/6.

Sy the complement ofG; in U; (vectors having  Otherwise, V' = C7 & 17. Hence,dim(Tq?) = 1 and
nonzero curl). dim(7?) = q(g + 1)(q +2)/6 — 1.

We haveP,(S1) = UL, (P,(52))2 = 3 x Ul & U2 and According to the previous analysi8y? = 4 x (C7 ; &
(P(S®))? = 6 x Ul @ 4 x U2 @ U with dim(P,(S1)) = T7) & (Coy @ 17). Consequently, the number of D.O.F. to
g+ 1, dim(P,(52))? = (¢ + 1)(q + 2) anddim(P,(S3))®> = be a55|gneq onasimplex isdim(C;_, ) + dim(77). Results
(¢ + 1)(q + 2)(q + 3)/2. Hence, the dimension @f? can be are shown in Table Il where the D.O.F. éfm(Co) [equa_l to
derived:dim(U}) = ¢ + 1, dim(U?) = (g — 1)(g + 1) and dim(S; ) —dim(Gy) = 3] are excluded from facet D.O.F. in the

dim(U2) = (¢ — 2)(g — 1)(¢+ 1)/2. range space and added to the null space.
Otherwise, according to De Rham’s complex, the grad oper-Inthe case op = 3 (volume element), all D.O.F. are assigned
ator is an isomorphism aP;’, , onto G, we havelim(G;) = o volume. No special analysis is needed.

dim(Py, ). Referring to results of the previous subsection, we Finally, the assignment of D.O.F. of-form elements to
havedim(G;) =q, dim(G,QI) = (¢—1)q/2, anddim(Gg) = r-simplex(r =0, 1, 2, 3) is summarized in Table IV.
(¢ — 2)(q — 1)g/6. The analysis of this section shows clearly the linksefbrm
The Helmholtz decomposition states tigl = G, & S». elements on each simplex, in particular the link of null spaces
Hencedim(S;’) = dim(U;’) — dim(GZ), ie. dim(Sql) =1, ofp-— 1—for.m element to the range spachpgﬁorm element
dim(SqQ) = (¢ — 1)(¢+ 2)/2 and dim(S;;’) = (¢ — 2)(q¢ — under the differential operator. This analysis is helpful, not only
1)(2q + 3)/6. The space of 1-form element is decomposed tdor the generation of basis, but also to the application of gauge
condition when necessary. For example, in the case of gauging
a vector potential formulation, it shows clearly what is the null
Wi=6x (G @Shedx (G2 @82 (G ®5% spacetobe removed. . .
The basis functions gf-form elements must be defined in
Consequently, the number of D.O.F. to be assign&ich away that the conformity and the unisolvence conditions
on a p-simplex is dim(G7_;) + dim(S}). Results are are satisfied [4], i.e. each element must match the corresponding
shown in Table Il where the D.O.F. afim(G,) [equal to CcONtinuity condition ofp—form field across j[he interface of ele—_
4 x dim(P?) — dim(P,) = 3] are excluded from edge D.O.F.ments, and the _shape fun9t|ons must be mdependgnt to prpwde
in the range space and added to the null space. an unique solution of the field equation. The following section
gives the general expressions of the basis functions that fulfill

C. 2-Form Element (Facet Element) the conformity requirement.

The number of D.O.F. on facet and volume is determined in
a similar way. Let us denote by VI. GENERAL EXPRESSIONS OFBASIS FUNCTIONS

vV, the 2-form space of polynomials with degree up;to  Let A; be barycentric coordinates of a pointwith respect
on S” (r = 2, 3) and having zero value oiS™ (r = to a nodei in S3. Let Nig—m) = Nig—my(Mi)s Eg—m) =
3) (2-vectors inS™ having zero normal component onE, .y (Ai, Aj), Fig—m) = Flg—m)(ANis A, M) and Vi) =
as”). Vig—m)(Xis Ajy Ax, Ar), 1 <m < 4, respectively, polynomials
Cy:  the subspace df; containing exact (closed) 2-formsof variables);’s with degree up ta—m. They will be further
(vectors which are curls of vector polynomial of degredistinct with different superscript or/and subscript when used in
g+ 1). different expressions.



1476 IEEE TRANSACTIONS ON MAGNETICS, VOL. 36, NO. 4, JULY 2000

TABLE Il
ASSIGNMENT OFD.O.F.OF 2-FORM (FACET) ELEMENT

Spaces|  Z(S%) = Cq Y% = Tg W(S%)
D.OF. on (null space of d) (range space of d) | (function space)
Facets 4 x(q-1)(q+2)/2 +3 4x1-3 4 x q(q+1)/2
Volume (9-2)(q-1)(2q+3)/6 | q(g+1)X(q+2)/6 - 1 (q-1)q(g+1)/2
Total q(g+1)(2q+7)/6 q(q+1)(g+2)/6 q(q+1)(q+3)/2
TABLE IV

ASSIGNMENT OFDEGREES OFFREEDOM

Element 0-form 1-form 2-form 3-form
D.O.F. on nodal edge facet volume
Vertices 4x1 - - -
Edges 6 x(g-1) 6xq - -

Facets 4% (q-2)(g-1)/2] 4xq(g-1) |4x q(q+1)/2 -

Volume | (4:3Xg-2)(g-1) | (9-2Xq-1)g | (a-Da(g+l) | q(a+1)(g+2)

6 2 2 6
Total | (q+1)(q+2)(a+3)] 9(@+2)(a+3) | ala+1)(a+d) | alg+1)(g+2)
D.OF. 6 2 2 6
A. O-Form Element (Nodal Element) Since A; is a O-form, the differential operato# can be
The basis functions of 0-form eleméit” take the following read grad. This elerrleng satisfies the 1-form gongormity
general expressions on each simplex: (curl-conformal), i.e. W, (5%) C H(cul) = {u € IL*(5%)|
curlw € IL%(S*)}. The tangential components of the vector
NG—phi € qu, qg>1; field are continuous on the interface of adjacent elements.

El XN €P;,  q>2;
Fla_ MM € P q>3;
Vi_pA NN ERS, g4

C. 2-Form Element (Facet Element)
Following functions spans the 2-form eleméﬁf:

2

0-form element ensureS® continuity on the interface of ad- rf R™(\i dXj A dg) € 2 T2 > 1:
m(qg—1) ? J k qg—1 q° q=z 1
jacent elements. It belongs to the Hilbert spaldé?(s5®) c "m0
H(grad)= {v € L?(S3)|eradv € IL?(S3)}. 3
Vm(q Q)Rm()\i)\j dAp NdN) € Cf;’,l & Tq?’, q>2.
B. 1-Form Element (Edge Element) m=0

We introduce first an operat®, which rotates indices such
that R fi; = fi;R' fij = fyi, andRfij = fija R fijn =
fini» R?fiji = frij, etc. The basis functions é¥; on each

This element is conforming iH (div) = {u € IL*(S3),
divu € L?*(5%)}. The normal components of the vector field
are continuous on the interface of adjacent elements.

simplex are:
1 D. 3-Form Element (Volume Element)
e m 1 1 . . . .
Z Erq-nyR™(NidXNy) € Gy @ 5, 721 Finally, the basis functions of 3-form element &¢° _,
m—O Vr;z(q 1)Rm()\i)\j AdAg /\d)\l) = V(Z—l) S qul,q > 1. They
m 2 S 9. are piece-wise continued functior{g |- 1) order polynomials].
g_:o (g 2>R (A dAe) GG 1 @5 72 % The coefficients of polynomials in the above expressions

must be determined in order that the functions are linearly
Z m(q 3)an (Aidj e dA) €G3 LD 537 q>3; mdep-endenF and model correctly Fhe null and range spaces of
- the differential operator on each simplex. The coefficients can
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_ residue These comparative studies show that, once we model cor-
1.0E+00 rectly the null and range space of the curl operator, all ele-
1,001 ments provide same accuracy of results. But the conditioning

of their matrix system is very different. So the conditioning of
1.08-02 1 the system must be taken as one of the important criteria when
1.0E:03 1 constructing element bases.
1.0E-04 -

VIIl. PROCEDURE FOR THEGENERATION OF BASES
1.0E-05 . . . .
A\\K Y The above analysis showed the link between differential

1.0E-06 N form-based elements of different degrees and of different order.
1.0E07 1 L This link illustrates the inclusion property ptform elements

and is helpful for the generation of their bases.
1.0E-08 Taking independent functions described in Section VI will
1.06-09 | form the interpolatory basis. However, recent studies showed the

advantages of hierarchical bases [6]. The hierarchy means that
1.08-10 ' ; ' ' ‘ ' ‘ the basis functions of the high order elements include all basis

0 100 200 300 400

functions of the spaces of lower order elements. This property
allows mixing of different order of elements in the same mesh
without the difficulty of matching field continuities. It is helpful

for mixed - andp-version adaptive mesh generation or for the
be determined in various ways and this leads to different typgsvelopment of adaptive multigrid solvers [15]-[16]. Since the
of elements [5]-[10]. spaces of higher order elements include those of lower order el-
ements, the generation of hierarchical bases can be conveniently
realized.

In the case of 2nd order 1-form element, we assign 2 D.0.g.For example, the hierarchical basis of 1-form element can be

per edge and 2 D.O.F. per facet. Different types of elements h@gherated using the following procedure. Supposing the 0-form

been developed [5], [8]-[10]. We have applied them in aform&lement has been generated with a hierarchical basis [17] and

lation in terms of magnetic vector potential to solve magnet!£t the first order 1-form elemeit’;: be the Whitney edge ele-
static problems [13] and in a combined magnetic vector poteRent: We denote byyy" = PAAFE , andGy_y = Gy \Gy_a,
tial and electric scalar potential formulation to compute edd; = 55 \9;—1, respectively, spaces of basis functions over the
currents [14]. r-simplex of 0-form and 1-form elements when the basis is up-
In the magnetostatic application [13], we have shown thdfaded fromthe ordey—1toq. £ € P}, Iy € P7, Vi € Py
the field distributions obtained with all elements are nearly ideAt€ hierarchical basis functions of 0-form element generated on
tical. However, the conditioning of the matrix system, and hen&§l9€, facet and volume, when the order is upgraded frem
the convergence behaviors are very different. The best conVér¢-
gence is obtained by Lee’s element [5]. In addition Lee’ elementA 9eneral procedure for the generation of hierarchical basis
has the advantage of being hierarchical [6]. of g-order 1-form element is, for = 2 to s = ¢,
When applying these elements to solve eddy current prob— Taking 1 function which is differential (gradient) of

number of iterations

Fig. 3. Comparison of convergence behaviors of various elements.

VIl. COMPARISON OFSOME 2nd CRDER 1-FORM ELEMENTS

lems, Lee’s element converges still more quickly than others do.
However, Lee’ element suffers the asymmetry problem of the—
facet basis functions: choosing differently two facet basis func-
tions among three available leads to different modeling spaces-
and has a harmful influence on numerical results. In order to sur-
mount this drawback but still keep the hierarchical property, we
introduced a new basis [14] in modifying the facet basis func- —
tions. This basis stays intact with the random choice of facet
basis functions, and keeps the good conditioning of the matrix—
system and the hierarchical property. A comparison with other
elements in eddy current application is shown in [14].

E7 e P! on each edge to generaig ;.

Takings — 2 functions, which are differential df™ ¢
P2 on each facet to generafé_, .

Adding s functions of non zero curl}’
Fe ey R™NiA;dN) €S2 on each facet to
complete the facet basis.

Taking(s — 2)(s — 3)/2(s > 3) functions which are
differential of V* € P2 to generate?®_,.

Adding s(s — 2)(s > 3) nonzero curl functions
Yommo Vi n R™M(NiA Ak dA) € 52 to complete
the volume basis.

2

This element is also applied for solving magnetostatic prob- A basis of 1-form element of the order up to 3 generated with
lems. In the case of a magnetic circuit problem (see definitidhis procedure is shown in Table V. The number before the func-
of the problem in [13]), the field distribution is almost identication indicates the number that take the same form of the basis
to that of other elements. The convergence behavior is showrfunction in rotating indices on a simplex. Application of this
Fig. 3, where the curves, A, K, Y andN correspond, respec- basis in the case of 2nd order is given in [14] and reported in the
tively, to the elements given in [5], [8]-[10] and our proposegdrevious section.
one [14]. It can be seen that our element has a good convergenc& good element basis must lead to a good conditioning of
behavior as Lee’s. the matrix system. The coefficients of polynomials in the basis
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TABLE V
A HIERARCHICAL 1-FORM @-ORDER (UP TO 3) ELEMENT BASIS

(1]

q edge functions Facet functions Volume functions 2]
L 1| Aiddy -Mdds - - 3]
2 1 [d(Ady) 2} Ai(AydAg - AedAy) -
3 HIOK A ; ;9(42’3{: Adhy) | 3| Ay - Mdhi) [4]

(5]

functions must be determined in order that the matrix condi—[G]
tioning is optimal. A good matrix conditioning requires the ma-
trix to be diagonally dominant. The ideal case is to have the basig7]
functions mutually orthogonal. However in practice, it is almost
impossible to get such anideal basis. What we can try is to makeg)
them as orthogonal as possible. It should be pointed out that the
orthogonality is problem dependent, i.e. the shape of elements[.g]
the material property of the problems. It is difficult to provide

a general rule to realize an orthogonal basis and further investi-
gation has to be carried out. [10]
IX. CONCLUSIONS (11]

With the help of De Rham’s complex, the null spaces and the
range spaces of the differential operatopebrm elements as  [12]
well as their link are clearly shown. After a complete analysis of[13]
the assignment of D.O.F. on each simplex, the general expres-
sions ofp-form elements are given. The determination of their[14]
coefficients varies and this leads to different kind of elements:
Comparison of several 2nd order 1-form elements shows thats]
even though they provide the same accuracy of results, their ma-
trix conditioning is very different. Utilizing the inclusion prop- [16]
erty of the spaces gf-form elements of different degrees and
orders, a procedure for the generation of the hierarchical basis is
given. Determination of coefficients in order to have an optima
matrix conditioning needs further investigation.

IEEE TRANSACTIONS ON MAGNETICS, VOL. 36, NO. 4, JULY 2000

REFERENCES

G. A. Deschamps, “Electromagnetics and differential fornRrdc.
IEEE, vol. 69, pp. 676-96, 1981.

H. Flanders Differential Forms with Application to the Physical Sci-
ences Academic Press, 1963.

A. Bossavit, “Whitney forms: A class of finite elements for three-dimen-
sional computations in electromagnetisisE Proc. A vol. 135, no. 8,

pp. 493-500, 1988.

J. C. Nédélec, “Mixed finite element in"R" Numer. Math. 35pp.
315-341, 1980.

J.F. Lee, D. K. Sun, and Z. J. Cendes, “Tangential vector finite elements
for electromagnetic field computationEEE Trans. Mag.vol. 27, no.

5, pp. 4032-4035, 1991.

J. P. Webb and B. Forghani, “Hierarchical scalar and vector tetrahedra,”
IEEE Trans. Magn.vol. 29, no. 2, pp. 1495-1498, 1993.

J. Wang and N. Ida, “Curvilinear and higher order “edge” finite elements
in electromagnetic field computatiodZEE Trans. Mag.vol. 29, no. 2,

pp. 1491-1494, 1993.

A. Ahagon and T. Kashimoto, “Three-dimensional electromagnetic
wave analysis using high order edge elementSEE Trans. Magn.

vol. 31, no. 3, pp. 1753-1756, 1995.

T. V. Yioultsis and T. D. Tsiboukis, “Multiparametric vector finite ele-
ment: A systematic approach to the construction of three-dimensional,
high order, tangential vector shape functiongEE Trans. Magn.vol.

32, no. 3, pp. 1389-1392, 1996.

A. Kameari, “Symmetric second order edge elements for triangles and
tetrahedrons,lEEE Trans. Mag.vol. 35, no. 3, pp. 1394-1397, 1999.

L. Kettunen, K. Forsman, and A. Bossavit, “Discrete space for div and
curl free fields,”IEEE Trans. Magn.vol. 34, no. 5, pp. 2551-2554,
1998.

J. C. Nedelec, “A new family of mixed finite elements irf R Numer.
Math, vol. 50, pp. 57-81, 1986.

Z. Ren and N. Ida, “Computation of magnetostatic field using second
order edge elements in 3DCOMPEL, vol. 18, no. 3, pp. 361-371,
1999.

——, Solving 3D Eddy Current Problems Using Second Order Nodal
and Edge Element€ompumag-Sapporo, 1999.

I. Tsukerman and A. Plaks, “Hierarchical basis multilevel precondi-
tioners for 3D magnetostatic problem$EE Trans. Mag.vol. 35, no.

3, pp. 1143-1146, 1999.

D. K. Sun, J. F. Lee, and Z. Cendes, “High order tangential vector bases
with optimal convergent rates for multigrid preconditioned solver,” un-
published, 1999.

7] P. Carnevali, B. Morris, Y. Tsuji, and G. Taylor, “New basis functions

and computational procedures for p-version finite element analysts,”
J. for Nume. Meth. In Engineeringol. 36, pp. 3759-3779, 1993.



