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Solving 3D Eddy Current Problems Using Second
Order Nodal and Edge Elements

Z. Ren, Senior Member, IEEE,and N. Ida, Senior Member, IEEE

Abstract—Several 2nd order nodal and edge elements have been
applied in a potential formulation to solve 3D eddy current prob-
lems. The asymmetry of the facet related functions in the edge el-
ement basis is discussed. A new basis is proposed. Application of a
gauge condition for the uniqueness of vector potential is cumber-
some in the case of high order elements. This work shows that the
system converges without explicit gauge condition when using the
bi-conjugate gradient method. The performance of different ele-
ments is compared through an example.

Index Terms—Eddy currents, finite element modeling, second
order edge elements.

I. INTRODUCTION

T HE WHITNEY (nodal, edge, facet, and volume) elements
have proven their efficiency in electromagnetic field com-

putation in the last decade [1]. They belong to differential forms
of different degrees. The Whitney edge element (1-form ele-
ment) has been widely used for solving electromagnetic field
problems in various frequency ranges. However, these elements
are built in first order.

The theory of high order edge (curl-conformal) and facet (div-
conformal) elements was advanced in the early of 80’s in [2].
Unfortunately, in this reference, no specific vector basis func-
tion was reported. Further investigation has been carried out in
recent years by different researchers. Different high order edge
elements were developed [3]–[7]. These are mostly applied in
the high frequency domain. Few works can be found in low fre-
quency and static field applications. The main difficulty in low
frequency applications seems to be the application of gauge con-
ditions.

This paper investigates some 2nd order edge elements in the
computation of eddy currents using a potential formulation. We
will show that, the system converges without explicit gauge con-
dition. This is the same conclusion as in the case of first order
elements.

One of the difficulties in the application of 2nd order edge
elements is the asymmetry of the facet related basis functions.
This issue will be discussed. A new basis preserving the hierar-
chical property and getting rid of the asymmetry problem of the
basis function will be proposed. The performance (accuracy and
convergence behavior) of different elements is then compared.
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II. SECOND ORDER EDGE ELEMENTS

The elements considered in this paper are tetrahedral. The
second order nodal element is the Lagrange type and contains
10 nodes (vertices plus one node in the middle of each edge).
The high order edge elements must model correctly the range
space and the null space of the curl operator. In the case of 2nd
order edge elements, the curl field must be complete to the first
order in the range of the curl operator. The number of degrees of
freedom needed to model a first order vector field is 12. The di-
vergence free condition reduces this number to 11. To model the
null space of the curl operator (the gradient field), the number
of degrees of freedom is 9. In consequence, the number of de-
grees of freedom required in a 2nd order tetrahedral edge ele-
ment is 20. These degrees of freedom are commonly assigned
to the edges and facets (2 per edge and 2 per facet).

The basis functions related to the edges and the facets take
the following general forms:

On an edge defined by the vertices

(1.a)

where is the barycentric coordinate of a point with respect
to the vertex . Permuting the indices in this expression gives
another basis function defined on the same edge.

On a facet defined by vertices :

(1.b)

Rotating indices leads to three functions, but only two of
them are used. Let us introduce a rotation operator, noted by,
such that , , and .
The second facet related function might be , or .

Let denote the space of second order edge element de-
fined by (1.a) and (1.b). It can be shown that belong to the
following domain of the curl operator:

curl curl

where
is the Hilbert space of a square integrable vector
field,
the three dimensional space of first order polyno-
mials and
the space of divergence free functions, over, re-
spectively.

Each of the function (1.a) and (1.b) is tangentially continuous
through the interface of two adjacent elements. They describe a
complete first order curl field over a tetrahedron.
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III. EDDY CURRENT FORMULATION

Consider an eddy current problem in a bounded region,
which includes a conducting region and an excitation coil

, carrying a current . The boundary of is split in two:
and the intersection of and is empty. On

the boundary, the boundary conditions on and
on hold.

To solve this problem we use a formulation in terms of mag-
netic vector potential and the time integral of electric scalar
potential . Solving weakly Ampere’s theorem, yields: find

and such that

curl curl

grad curl

(2.a)

grad grad grad

(2.b)

where

on

on

and is a vector potential such that curl , introduced to
enforce div . It is defined in a domain containing the
excitation coil . is the previously described edge element
space and is the space of the common 2nd order Lagrange
type nodal elements.

In the above equation, the system is singular in both con-
ducting and nonconducting regions because includes the
null space of the curl operator and hence the gradient space of
nodal elements. The solution of is not unique and a gauge
condition must be applied to ensure its uniqueness. The number
of redundant unknowns to be removed is the dimension of the
null space of the curl operator. A similar technique like the tree
gauge in the case of 1st order element [8] can be extended to the
case of high order elements. However, the construction of a tree
in the case of high order element can be very complicated. It re-
quires a careful analysis of the null space of the curl operator of
the edge elements [9], [10].

According to the experience with 1st order edge element,
the use of a tree can cause ill conditioning of the system and
decrease the accuracy of the solution [11]. The tree technique
seems not to be the best solution. It has been shown that, when
using an iterative solver like the conjugate gradient method, the
system is implicitly gauged by the solver itself and the conver-
gence behaves much better than the gauged formulation. In our
application, the singular system will be solved using a conju-
gate gradient type iterative solver and no explicit gauge condi-
tion will be applied.

IV. DESCRIPTION OFSEVERAL 2ND ORDERELEMENTS

A. Some Kinds of 2nd Order Edge Elements

The coefficients in (1) can be determined in various ways
and this leads to different kinds of elements [3]–[7]. Some of
these elements are considered in our study. Their edge and facet
related basis functions are given below.

1) Lee’s element [3]

(3.a)

(3.b)

2) Ahagon’s element [6]

(4.a)

(4.b)

3) Yioultsis’s element [7]

(5.a)

(5.b)

It is noted that Lee’s element includes the 1st order edge ele-
ment basis. It belongs to the Webb’s hierarchical elements [4].
The hierarchy means that the basis functions of the high order
elements include all basis functions of the spaces of lower order
elements. This property allows mixing of different order of ele-
ments in the same mesh without the difficulty of matching field
continuities. This is a helpful property for mixed- and -ver-
sion adaptive mesh generation or for using adaptive multigrid
solvers.

B. On the Asymmetry of Facet Related Basis Functions

The 2nd order edge element assigns two degrees of freedom
to each facet. However, rotating the indices of the facet
related basis function (1.b) gives three functions. The basis is
hence asymmetric.

This asymmetry may cause, first, difficulties in the numer-
ical implementation. Special attention must be paid to choose
the same facet basis functions for the two adjacent tetrahedra.
In order to avoid ambiguity, in our application, the two basis
functions on a facet are chosen such that and

, ensuring a unique choice of degrees of freedom on the
facets.

Second, we may ask if the random choice of the asymmetric
facet functions will influence the accuracy of results. To check
this point, let us see the dependence of those three functions.
Using again the rotation operator, we note that Ahagon’s and
Youlsis’ elements satisfy the relation:

(6)

This means that taking any two of three functions spans the same
space, and hence we can expect that the choice of any two of
three functions will not influence the numerical results. Instead,
Lee’s element does not fulfill this relation, but

. This means different choices differ from a gradient



748 IEEE TRANSACTIONS ON MAGNETICS, VOL. 36, NO. 4, JULY 2000

Fig. 1. Example of an eddy current problem

field and hence lead to different modeling spaces. The numer-
ical results will depend on the choice of facet basis functions.
Nevertheless, it should be noted that even though Lee’s func-
tions themselves do not satisfy (6), their curls do. This means
the curl field will not depend on the choice of bases. This is the
case when solving magnetostatic problems [12].

To get a symmetric edge element, Kameari proposed to add
one node in the middle of each facet [13]. The terms
are added to the second order polynomials to form nodal basis
functions. This results in a 14 nodes nodal element. To build 2nd
order edge elements, 3 degrees of freedom are assigned on each
face so that the functions are symmetric. The total number of
degrees of freedom becomes 24. Adding 4 nodes in the element
increases the dimension of the null space of the curl operator to
13 but doesn’t affect the dimension of its range space. It does not
improve the accuracy of the curl field [12]. Since the number of
unknowns becomes much lager, it is not considered in this paper.

C. Proposal of a New Basis

Lee’ element has the advantage of being hierarchical but suf-
fers the problem of asymmetry for the facet basis functions. To
get rid of this problem, we propose to modify the facet functions
and give the new basis below:

(7.a)

(7.b)

This basis includes the 1st order edge element like Lee’s, and
hence we keep the hierarchy property. In addition, the face func-
tions satisfy (6) and the modeling space will not be influenced
by the random choice of facet basis functions.

V. COMPARISON OFRESULTS

The example to be considered concerns a conductor inserted
in the Centre of the air gap of a magnetic circuit. One fourth
of the domain is shown in Fig. 1. The study domain is meshed
by 1600 tetrahedral elements. The edge elements are applied on
the whole region whereas the nodal elements only in the con-
ducting domain. There are 9942 unknowns related to edge ele-
ments, of which 3634 are associated with edges and 6318 with

(a)

(b)

Fig. 2. Convergence behavior of different elements (a)f = 50 Hz, (b)f = 1

kHz.

facets. The degrees of freedom related to nodal elements are
486. The excitation current in the coil is sinusoidal. The equa-
tion (2) is complex and solved with a diagonal preconditioned
bi-conjugate gradient method.

The conditioning of the complex system will depend on the
frequency, i.e. the ratio skin depth over mesh size . In
order to check the behavior of these elements under different
ratios , the problem is solved under two frequencies 50 Hz
and 1 kHz with the same mesh. In the conducting region, the
average mesh size is about 10 mm. At 50 Hz, the ratio

; and at 1 kHz, .
The elements (3)–(5) and (7) are used to solve this problem.

No specific gauge condition is applied to ensure uniqueness
of the vector potential. The convergence behaviors are com-
pared in Fig. 2. for both frequencies. It is observed that in both
cases, the best convergence is obtained for Lee’s element and
the new proposed elements (curvesand ). The convergence
of Yioultsis’s element is relatively slow (curve). Ahagon’s
element (curve ) has a rate of convergence faster than’s
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(a)

(b)

Fig. 3. y-component current density on the center line (y = 0, z = 0) of the
conductor (a)f = 50 Hz, (b)f = 1 kHz.

but slower than ’s. This is the same conclusion as we ob-
served for the magnetostatic case [12]. It should be noted that,
in the conducting region, at low frequency , the mag-
netic energy term dominates, the conditioning of the system is
mostly determined by the eigenvalues of the curl-curl matrix
(real part of the complex system). On the other hand, at high
frequency , the joule losses term becomes more im-
portant and the conditioning of the system is mostly determined
by the eigenvalues of the imaginary part. We concluded that, in
both cases, Lee’s and the new proposed elements give the best
conditioning of the system.

We now examine the numerical results. In particular, we will
check if the random choice of facet related basis functions (the
asymmetric basis) influences the results. To do this, for each

kind of element, we considered two bases. One consists in
choosing two basis functions such that and , as
previously indicated. The other takes two functions such
that and . The curves plotted in Fig. 3 correspond to
the -component of the current density (imaginary part) along
a line in the middle of the conductor, obtained with different
elements. We observed that, all elements give the same field
results (the difference is smaller than 0.1 percent) except
Lee’s. The choice of facet basis functions has no influence on
the numerical results for Yioultsis’s, Ahagon’s and the new
proposed elements. Instead, Lee’s element suffers the problem
of the asymmetry. Using two bases, we get two different results.
The difference is small in the case of big ratios. Because
in this case, the curl-curl term dominates and the curl of Lee’s
basis satisfies the dependence relation (6). However, when the
frequency increases (the ratio diminishes), it is the term of
the edge element function itself that becomes dominant. The
difference of results becomes bigger as we can observe from
Fig. 3(b). We conclude that the accuracy of Lee’s elements is
affected by the random choice of facet functions.

VI. CONCLUSIONS

Several 2nd order edge elements have been applied in a mag-
netic vector and electric scalar potential formulation to solve
eddy current problems. Results show that the convergence of
the system is achieved without explicit gauge condition when
using a conjugate gradient method.

Through a comparison on an eddy current problem using the
same mesh under different frequencies, we conclude that the
conditionings of the matrix system of these elements are very
different. This is clearly illustrated by their convergence be-
havior. The systems of Lee’s element and the new proposed el-
ement are better conditioned than the others.

As for the numerical results, all these elements provide
nearly the same field and current distribution as long as the skin
depth/mesh size ratio is large (larger than 2). When this ratio
diminishes, the results with Lee’s element are influenced by
the random choice of asymmetric facet basis functions while
the other elements (including the new proposed element) stay
intact with the random choice.

In addition, with the new proposed element basis, we keep the
hierarchical property of Lee’s element. This property is helpful
for coupling with boundary element methods that use elements
of different order, for mixed - and -version adaptive mesh
refinement, and for solving problems using adaptive multigrid
methods.
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