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Abstract Several second order edge elements have been applied to solving magnetostatic
problems. The performances of these elements are compared through an example of magnetic
circuit. In order to ensure the compatibility of the system equations and hence the convergence,
the current density is represented by the curl of a source field. This avoids an explicit gauge
condition which is cumbersome in the case of high order elements.

I. Introduction
Improvement of the accuracy in finite element modeling can be achieved
through two methods: local mesh refinement and increase of the order of the
shape functions of the elements. Local mesh refinement leads in some cases to
deformed elements, which may worsen the stability of the system and the
accuracy of the results. The use of high order elements turns out to be more
effective in such situations.

The Whitney (nodal, edge, facet and volume) elements have proven their
efficiency in electromagnetic field computation in the last decade (Bossavit,
1988). They are differential forms of different degrees. The main properties of
these elements are: conformity (matching the corresponding field continuity
conditions) and inclusion (the element of low degree is included in the element
of high degree). The Whitney edge element (one-form element) has been widely
used for solving electromagnetic field problems in various frequency ranges.
However, these elements are built in first order.

The theory of high order edge (curl-conformal) and facet (div-conformal)
elements was advanced in the early 1980s in NeÂdeÂlec (1980). Unfortunately, in
this reference, no specific vector basis function was reported. Further
investigation has been carried out in recent years by different researchers.

Different high order edge elements were developed (Lee et al., 1991; Webb
and Forghani, 1993; Wang and Ida, 1993; Ahagon and Kashimoto, 1995;
Yioultsis and Tsiboukis, 1996; Kameari, 1998). These are mostly applied in the
high frequency domain. Only few works can be found in low frequency and
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static field applications. The main difficulty in low frequency applications
seems to be the application of gauge conditions.

This paper investigates several second order edge elements in the
computation of magnetostatic fields. We will show that, in the case of a
compatible formulation, when using an iterative solver such as the conjugate
gradient method, the system converges without an explicit gauge condition. This
is the same conclusion as in the case of first order element. The performance
(accuracy and convergence behavior) of different elements is then compared.

II. Different types of second order edge elements
In this paper we consider the case of tetrahedral elements. The second order
nodal element built on the tetrahedron is the Lagrange type and contains ten
nodes (vertices plus one node in the middle of each edge). The high order edge
elements must model correctly the range space and the null space of the curl
operator. In the case of second order edge elements, the curl field must be
complete to the first order in the range of the curl operator. The number of
degrees of freedom to model a first order vector field is 12. The divergence free
condition reduces this number to 11. To model the null space of the curl
operator (the gradient field), the number of degrees of freedom is nine. In
consequence, the number of degrees of freedom required in second order
tetrahedral edge element is 20. These degrees of freedom are commonly
assigned to the edges and facets (two per edge and two per facet).

The basis functions related to the edges and the facets take the following
general forms:

(1) On an edge defined by the vertices {i, j}

wij � �i�a1 � b1�i � c1�j���j � �j�a2 � b2�j � c2�i�r�i; �1:a�
where �i is the barycentric coordinate of a point with respect to the
vertex i. Permuting the indices ij in this expression gives another base
function defined on the same edge.

(2) On a facet defined by vertices {i, j, k}:

wijk � d1�i�jr�k � d2�j�kr�i � d3�k�ir�j: �1:b�

Rotating indices ijk leads to three basis functions on the surface, but only two
of them are used.

Let W1
2 denote the space of second order edge element defined by (1.a) and

(1.b). It can be shown that W1
2 belongs to the following domain of the curl

operator:

W1
2 � H�curl� � fuju 2 IL2�
�; curl u 2 IP1�
� \D�
�g

where IL2�
� is the Hilbert space of a square integrable vector field, IP1�
� the
three dimensional space of first order polynomials and D�
� = ker(div) the
space of divergence free functions, over 
, respectively.
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Each of the functions (1.a) and (1.b) is tangentially continuous through
the interface of two adjacent elements. In general, wij forms a second order
vector field turning around the opposite edge. Its circulation vanishes
on all edges except on the edge ij. Each term of the function wijk describes a
second order vector field normal to the facet opposite the vertex i, j, or k.
Consequently, the function wijk forms a field turning around edges that do
not belong to the surface ijk. The circulation of wijk is obviously zero along all
edges.

The element defined by (1.a) and (1.b) describes a complete first order curl
field:

curl wij � �a1 ÿ a2 � �2b1 ÿ c2��i � �ÿ2b2 � c1��j�r�i �r�j; �1:c�

curl wijk ��d1 ÿ d3��ir�j �r�k � �d2 ÿ d1��jr�k �r�i

� �d3 ÿ d2��kr�i �r�j;
�1:d�

provided that the coefficients of the first order terms in these expressions are
not simultaneously zero.

It must be emphasized that, in general, the degrees of freedom do not
have a direct physical meaning such as the circulation of a field along edges,
unless an orthogonal condition (the line integrals of the basis function on
each edge is independent from each other) is satisfied. Unfortunately, this
condition cannot be realized because the line integrals of wij and wijk on a line
given on the facet ijk are usually not independent. But in general case, the
circulation of a field along an edge is a linear combination of several degrees of
freedom.

The coefficients in expressions (1.a) and (1.b) can be determined in various
ways and this leads to different kinds of elements.

A. Lee's element
The basis functions that related on the edges and the facets of Lee's element
(Lee et al., 1991) are, respectively,

wij � �ir�j; �2:a�

wijk � �i�jr�k; �2:b�
The curls of Lee's element are

curl wij � r�i �r�j; �2:c�

curl wijk � �ir�j �r�k ÿ �jr�k �r�i �2:d�
It can be noted that Lee's element belongs to the Webb's hierarchical elements
(Webb and Forghani, 1993). The hierarchy means that the basis functions of
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the high order elements include all basis functions of the spaces of lower order
elements. This allows mixing of different order of elements in the same mesh
without the difficulty of matching field continuities. It is a helpful property for
adaptive mesh (mixed h- and p-refinement) generation.

B. Ahagon's element
Ahagon's element (Ahagon and Kashimoto, 1995) is derived from the
decomposition of the gradient of second order nodal shape functions. The
inclusion property requires that the gradient of second order nodal element is
included in the second order edge element. This property means that the sum of
edge element basis functions for the edges meeting at a vertex must be the
gradient of nodal function on this vertex:X

j

wij � grad wi;

where wi is the basis function of the second order nodal element related to node
i. The basis function derived in such a manner has the following form:

wij � �i�ÿ1� 4�i�r�j � �j�1ÿ 4�i�r�i; �3:a�

wijk � 4�i�jr�k ÿ 4�j�kr�i �3:b�

Taking the curl, we have

curl wij � �ÿ2� 12�i�r�i �r�j; �3:c�

curl wijk � 4�ir�j �r�k ÿ 8�jr�k �r�i � 4�kr�i �r�j �3:d�

C. Yioultsis' element
Yioultsis' element (Yioultsis and Tsiboukis, 1996) takes the weighted fields as
degrees of freedom. By applying some constraints such that the linear
combination of basis functions of edge elements gives the gradient of nodal
elements, the following basis functions are achieved:

wij � �i�ÿ4� 8�i�r�j � �j�2ÿ 8�i�r�i; �4:a�

wijk � 16�i�jr�k ÿ 8�j�kr�i ÿ 8�k�ir�j �4:b�

Their curls are

curl wij � 6�ÿ1� 4�i�r�i �r�j; �4:c�

curl wijk � 24��ir�j �r�k ÿ �jr�k �r�i� �4:d�
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D. Kameari's element
The placement of degrees of freedom on the facets in above described elements
is asymmetric. This may cause some difficulty for the numerical
implementation. To get a symmetric edge element, Kameari proposed to add
one node in the middle of each facet (Kameari, 1998). This results in a 14 nodes
nodal element. The terms �i�j�k are added to the second order polynomials to
form nodal basis functions. To build second order edge element, three degrees
of freedom are assigned on each face. The total number of degrees of freedom is
24. By doing so and after applying an orthogonal condition such thatZ

lj

widl � �ij

where �ij is the Kronecker, the following basis functions are obtained:

wij ���i�ÿ33� 63�i � 30�j�r�j

� �j�ÿ5� 15b2�j ÿ 18c2�i�r�i�=10;
�5:a�

wijk � 3�31�i�jr�k � 7�j�kr�i � 7�k�ir�j�=5 �5:b�
The curls of these functions are

curl wij � 2�ÿ7� 36�i�r�i �r�j=5; �5:c�

curl wijk � 72��ir�j �r�k ÿ �jr�k �r�i�=5 �5:d�
It is noted that, in Kameari's element, the degrees of freedom are the circulation
of the field along edges, unlike the other elements.

Adding four nodes in the element increases the dimension of the null space
of the curl operator to 13 but does not affect the dimension of its range space.
The curl of its element is complete to the first order in the range of the curl
operator just like the other elements.

III. Application in magnetostatics
Consider a magnetostatic problem in a bounded region 
. The boundary of 
 is
split in two: @
 � ÿb [ ÿh and the intersection of ÿb and ÿh is empty. On the
boundary, the boundary conditions n � b � 0 on ÿb and n� h � 0 on ÿh hold.

Working with the magnetic vector potential a, the variational formulation is
derived by solving weakly Ampere's theorem:

Find a 2W2
1

b such thatZ



1

�
curla0 � curla d
 �

Z

j

a0 � jd
 8a0 2W2
1

b �6�

where 
j denotes the excitation coil contained in 
 �W2
1

b is the second order
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edge element space including the boundary condition on ÿb:

W2
1

b � fa 2W2
1jn� a � 0 on ÿbg

In equation (6), the system matrix is singular because W2
1 includes the null

space of the curl operator. The solution of a is not unique and a gauge condition
must be applied to ensure its uniqueness. Assuming 
 is topologically trivial,
the kernel of the curl operator is a gradient field. The number of zero
eigenvalues of the curl-curl matrix is equal to the number of nodes (including
those defined on the edges and eventually on the facets) minus one. This
corresponds to the dimension of null space of the curl operator. The unknowns
(as well as related equations) to be removed can be thus determined by a
spanning tree technique, like the case of first order element (Albanese and
Rubinacci, 1990). However, the construction of a tree in the case of second order
element can be very complicated. Moreover, according to the experience with
first order elements, the use of a tree can cause some instability of the system
and affect the accuracy of the solution. The tree technique does not seem to be
the best solution.

It has been shown that convergence can be achieved without an explicit
gauge condition provided that the system equation is compatible (Ren, 1996),
i.e. the right hand side belongs to the range of the curl-curl matrix, or the
discrete form of the RHS must be divergence free. In order to enforce
compatibility, we express j by curl t, where t is a vector potential defined in a
domain 
t containing the coil 
j. It can be seen as a source field. Replacing j of
(6) by curl t and integrating by parts, we get the following formulation

Find a 2W2
1

b such thatZ



1

�
curla0 � curla d
 �

Z

j

curla0 � td
 8a0 2W2
1

b �7�

This formulation is unconditionally compatible whatever the discretisation of
t. Usually, according to its nature, the vector t is interpolated by the edge
element (first order in our application). To solve the formulation (7), no explicit
gauge condition is needed when using an iterative solver (Ren, 1996).

The previously described elements have been applied to approximate W2
1.

In order to avoid the ambiguity that may occur during the assignment of
degrees of freedom on the facets (in the asymmetric case of two unknowns per
facet), the two basis functions wijk on a facet ijk are chosen in such a way that i
< j and i < k. This ensures a unique choice of degrees of freedom on the facets.

The following section compares the performance of these elements through
an example.

IV. Comparison of results
The example to be considered is a linear magnetostatic problem. It concerns a
magnetic circuit. One-quarter of the domain is shown in Figure 1. The domain
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is meshed by 1,050 tetrahedral elements. The mesh contains 5,824 unknowns of
which 1,960 are related to edges and 3,864 to facets. In the case of Kameari's
element, the number of unknowns is 7,750 of which 5,790 are related to facets.
The system of equations corresponding to (7) is solved by the diagonal
preconditioned conjugate gradient solver.

The results of the field (magnetic flux density) distribution given by the four
kinds of elements are almost identical. This is not surprising because all these
elements model correctly the range space of the curl operator with complete first
order polynomials. The dimensions of the range space of the curl operator are
identical for all these elements. Nevertheless, the convergence behaves very
differently as can be seen in Figure 2, where the error represents the residue of
the vector potential. The best convergence is obtained for Lee's element (Lee et
al., 1991) (which belongs to the Webb's hierarchical element (Webb and
Forghani, 1993)) (curve L). The convergence of Yioultsis's element (Yioultsis and
Tsiboukis, 1996) is relatively slow (curve Y). Ahagon's element (Ahagon and
Kashimoto, 1995) (curve A) and Kameari's element (Kameari, 1998) (curve K)

center core

air gap

core

coil

Figure 1.
Example of a magnetic

circuit
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Figure 2.
Convergence behaviors

of various elements
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have the same order of convergence, faster than Y's and slower than L's, but K's
element requires more cpu time because its number of unknowns is much higher
than other elements.

In order to understand the difference of the convergence behaviors, the
eigenvalues of the elementary curl-curl matrix constructed over a standard
element {(0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1)} are computed. There are 9 zero
eigenvalues for L's, A's and Y's elements and 13 zero eigenvalues for Kameari's
element. This corresponds to the null space of the curl operator as expected.
The number of non-zero eigenvalues of K's element is the same as the others.
This confirms that the dimensions of the range space of all these elements are
the same. The non-zero eigenvalues are given in the Table I.

It can be observed that the convergence behavior of different elements is
related to their maximal eigenvalue of the curl-curl matrix. This observation is
different from the classical conclusion where the convergence is related to the
condition number (the maximal eigenvalue over the minimal eigenvalue). It
must be noted that this conclusion is true for positive definite systems. In our
case, the system equation is semi-positive definite. The minimal eigenvalue is
zero and the condition number is infinite. It seems that in such a case, the
conditioning of matrix system and hence the convergence behavior is affected
by the maximal eigenvalue. The smaller the maximal eigenvalue is, the faster
the system converges. The example shows that Lee's element behaves better
than other elements.

V. Comparison with first order element
A question often asked is whether the p-refinement technique (increasing the
order of basis functions) or h-refinement technique (diminishing the size of
elements) must be used to improve accuracy of results. In this section we try to
give a comparison of the performance of second order and first order edge
elements for the computation of magnetostatic fields.

In order to have a rational comparison, the refinement of the first order
element mesh is arranged so that the number of unknowns is of the same order
as for the second order element. The example of Figure 1 is considered. The

Table I.
Non-zero eigenvalues of
the elemental
curl-curl matrix over a
standard element

Lee Ahagon Yioultsis Kameari

0.0083 4.8000 0.8186 10.3680
0.0351 0.6667 19.2000 10.3680
0.0023 1.2000 1.8008 10.3680
0.0049 0.8996 1.8008 0.8407
0.0172 1.1034 35.1814 1.6725
0.0204 2.6908 6.5088 1.6725
0.0319 2.8084 8.8557 4.0976
0.0380 3.9456 24.6535 4.0976
0.3566 4.0020 26.6221 12.3326
1.3652 5.9308 39.0369 31.3712
1.3868 7.1529 53.9214 31.3712
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first order element mesh contains 5,520 elements and 5,700 unknowns
(compared with 5,824 unknowns for second order element). The convergence
behavior of the first order element is compared with that of Lee's element in
Figure 3.

The result shows that for the same order of number of unknowns, the two
kinds of elements offer almost the same convergence behavior. But the first
order element consumes much less cpu time because its stiffness matrix is more
sparse than that of the second order element. In this example, the number of
non-zero elements (diagonal plus the symmetric part) in the stiffness matrix is
43,828 for the first order element whereas this number is 106,888 for the second
order element, more than twice of the first one. So, for the same order of number
of elements, the second order element requires more cpu time and more
memory space.

As concerns accuracy, the first order element provides a piecewise constant
flux density field whereas the second order element gives a piecewise linear
approximation. The solution behaves much better for the second order element,
especially where the variation of the field is significant. This statement is
clearly shown by the distribution of the magnetic flux density on a line in the
air gap of the magnetic circuit (Figure 4).

To get a good solution with less cpu time and memory, the best solution is
undoubtedly to mix the first and second order elements. The high order
elements are to be used only where it is necessary. In this point of view, the
hierarchical elements (Webb and Ida, 1993) to which Lee's element belongs,
may be useful.

VI. Conclusions
Four kinds of second order edge elements have been applied to calculate
magnetostatic fields. The compatibility of the formulation is ensured by
introducing a source field to represent the current density and by projecting
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this field on the curl of the element space. The convergence of the system is
achieved without explicit gauge condition.

Through a comparison on a magnetic circuit problem using the same mesh,
we conclude that all these elements provide the same accuracy as concerns the
curl field (the flux density). However, the conditionings of the matrix system of
these elements are very different. This is clearly illustrated by their
convergence behaviors and also the difference of eigenvalues of a standard
element. In this sense, Lee's element seems to be better than the others.
Moreover, it is simple in form and belongs to hierarchical elements which may
be helpful for mixed h- and p-adaptive mesh refinement.

A comparison with first order elements has also been carried out. Results
show that for the same order of unknowns, the first order element is less time
consuming because its stiffness matrix is more sparse. But second order
elements provide smoother field results. This comparison confirms the
necessity of mixing different orders of elements in adaptive mesh generation.

It must be indicated that the comparison given in this paper concerns the
magnetostatic field case. The conclusion may change for magnetodynamic field
computation. In fact, even though all these elements provide the same curl field,
the approximation of the primal field by these elements may be different. Their
performance for the computation of magnetodynamic fields will be the subject
of further study.
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