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Abstract

In order to maximize the performance of subsurface radar investigations there ex-
ists a vast range of algorithms that can be applied to the data obtained to find
the target’s location and reflectivity. Minimizing the data computing time becomes
the primary issue in choosing one algorithm over another. In this work, three imag-
ing methods are used to reconstruct the geometric and dielectric characteristics of
buried cylinders. The subject of this work is qualitative comparisons between these
methods based on different performance parameters with respect to the discrepancy
between calculated and true object characteristics. These methods are applied to
the detection of inclusions in concrete structures.

Key words: Numerical modeling, Inverse Problems, Non-destructive testing,
Neural Networks, Particle Swarm Optimization.

1 Introduction

Image classification is a commonly pursued area in diverse fields such as mil-
itary, security systems, health monitoring and biomedical engineering. This
is due to the necessity of eliminating the risk of human misinterpretation by
using a machine. The main idea is to obtain information by processing data
obtained from sensors. Such machines can substantially reduce the time em-
ployed for interpretation and improve accuracy of decision making by human
operators.
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The major technical drawback to apply imaging algorithms is the large vari-
ation in the inspected target signatures due to environmental conditions, ge-
ometric variations, noise, and sensors’ characteristics. Therefore this can be
considered as a multidisciplinary problem requiring contributions from diverse
technologies.

Notwithstanding the importance of the above-mentioned applications, this pa-
per concentrates in the Non-Desdructive Testing (NDT) of concrete structures,
which requires reliable measurement methods. Pulsed radars are attractive
as environment measurement methods for various applications including the
examples above. The waveform data is obtained by scanning an omnidirec-
tional antenna. The use of this waveform for estimating target characteristics
is known as an ill-posed inverse problem.

In the past, various imaging or inversion techniques have been developed to
refocus the scattered signals back to their true spatial location. Most of them
were based on the numerical inversion of integral equations. All these tech-
niques are characterized by a high level of complexity and, even in the cases
which accuracy of the solution is good, they result in a significant computa-
tional burden. Consequently, the imaging of typical field data may be difficult
due to problems like limited coverage, noisy data or nonlinear relations be-
tween observed quantities and physical parameters to be reconstructed.

Therefore, it has become necessary to use more efficient analysis for the raw-
data interpretation. Such analysis requires algorithms by which problems hav-
ing complex scattering properties can be solved as accurate and as fast as
possible. This specification is difficult to achieve when dealing with iterative
algorithms characterized by a forward solver as part of the loop, which often
makes the solution process computationally prohibitive for large problems. An
alternative approach is the use of model-free methods based on example data.
This category is represented by Artificial Neural Networks (ANN).

Three imaging methods are investigated in this paper. First, a reverse-time
migration algorithm is implemented to refocus the target to its true spatial
location. Also, a model fitting technique was used to classify the target using
Particle Swarm Optimization. Finally, buried inclusions characteristics con-
sidering a non-homogenous host medium were found by using ANN. They are
examined with respect to complexity and the ability to reproduce the charac-
teristic of the underground targets considering the host medium as a concrete
structure.
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2 Inverse problems

To predict the result of a measurement it is required a model of the system
under investigation, and a physical theory linking the parameters of the model
to the parameters being measured. This prediction of observations, given the
values of the parameters defining the model, constitutes the forward problem
depicted in Fig. 1. The inverse problem consists in using the results of actual
observations to infer the values of the parameters characterizing the system
under investigation.

Electromagnetic wave propagation inverse problems are typically ill-posed,
as opposed to the well-posed problems more typical when modeling physical
situations where the model parameters or material properties are known. A
problem is called ill-posed if it satisfies one of the following three conditions.

(1) Existence. There may be no model that exactly fits the data. This can oc-
cur in practice because our model of the system’s physics is approximate
or because the data contain noise.

(2) Uniqueness. If exact solutions do exist, they may not be unique, even
for an infinite number of exact data points. That is, there may be other
solutions besides the one found that exactly satisfy the expected input.

(3) Instability. The process of computing an inverse solution can be extremely
unstable in that a small change in measurement can lead to an enormous
change in the estimated model. The condition of stability is often violated
for ill-posed problems.

The focus here is on the inverse problem of finding the characteristics of a
target buried in a dielectric material given the reflected field measured by the
antenna. In practice, the reflected signal is a collection of discrete observations
in time. For the radar assessment of concrete, the objective is to determine
a finite number of parameters. The parameters needed to characterize inclu-
sions in a dielectric slab are found by identifying electrical (permittivity and
conductivity) and geometrical (depth and radii) properties. Such a problem is
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called discrete inverse problem or parameter estimation problem. In general,
this is a difficult problem because the obtained information is not sufficient for
estimation, which requires some a priori information about the inclusions. On
the other hand, a large number of data can bring the problem to instability.

One possible technique to overcome these shortcomings is the use of para-
metric algorithms which are based on optimization algorithms. This kind of
algorithms update the parameters iteratively to minimize (or maximize) a
certain evaluation function. The computation of an approximate electric or
magnetic field is done by the finite-difference time-domain (FDTD) method
as a forward solver. The optimization process can be carried out by using a va-
riety of algorithms such as the Newton method, conjugate gradient method or
evolutionary algorithms. One major limitation of using parametric algorithms
is the time of calculation that can be prohibitive for 3D problems.

Non-parametric algorithms can also be used. Usually they are complex to
implement but they can solve inverse problems faster than parametric algo-
rithms because it is not necessary to iteratively evaluate the function. Migra-
tion algorithms belong to non-parametric algorithms. Migration is an imaging
technique commonly used for seismic prospecting. However, it can be applied
for general media and targets. Considering the radar inspection of concrete
structures a migration algorithm for vector waves was implemented based on
the idea of matched filter. This algorithm is described next.

3 Reverse-time migration algorithm (RTMA)

The migration process essentially constructs the target reflector surface from
the recorded surface. The migration technique has been widely developed in
acoustic, seismic and geophysical engineering and was originally developed in
two-dimensional form by Hagedoorn (1954). Some surveys can be found in
(12; 13; 15). In (1) a pair of FDTD reverse-time migration algorithms was
presented for radar data processing that use linear inverse scattering theory
to develop a matched-filter response for the radar problem. These algorithms
were developed for both bistatic and monostatic antenna configurations.

Spatial location and reflectivity are typical information obtained from radar.
Since most radars use broad beamwidth antennas, the energy reflected from a
buried structure is recorded over a large lateral aperture in the image space.
For example, a monostatic survey can be used to collect the data over a discrete
object, such as a pipe in which the diffraction appears as a hyperbola in the
space-time image. In this case, no further processing may be needed if the
goal is simply to detect the pipe. However, imaging algorithms must be used
to move the observed scattering events to their true spatial location and to
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estimate the target’s reflectivity.

The algorithm developed in (1) is based on the notion of a matched filter,
which is widely used in radar applications. The matched filter concept can be
explained as a correlation of the received signal with the expected or estimated
signal from a specific target. If this correlation produces a large value, then it is
likely that the target is present. The resulting algorithm can be directly related
to reverse-time migration. Using this technique, an image can be perceived as
a backpropagated wave-field reconstruction of the dielectric contrast within
the ground.

Mathematically, the matched filter transfer function H is expressed as the
complex conjugate of the expected received waveform due to the target which
the filter is being matched. The output of the matched filter for N transmitters,
located at the position vectors r

′′

n, and an M -element receiver array, located
at the position vectors r

′′

m is expressed as (1)

S (r) =
N
∑

n=1

∫ M
∑

m=1

H
(

r
′′

n, r
′

, rm; ω
)

Un (rm; ω) dω (1)

where Un is the received waveform due to the nth transmitter as shown in the
Fig. 2.
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Fig. 2. Radar problem geometry.

The problem geometry depicted in Fig. 2 consists of two half spaces where
Region 1 corresponds to free space. An inhomogeneous ground, characterized
by constitutive parameters µ0, ǫ2(r), is denoted as Region 2. Considering a
weakly scattering object of finite size with constitutive parameters µ0, ǫ(r)
located within the ground the matched filter will maximize the output power
at t = 0 if the complex conjugate of the matched filter is equal to the received
signal.

The scattered electric field is expressed as

Esca (r) = −
∫

G
(

r, r
′
) [

k2
(

r
′
)

− k2

b

(

r
′
)]

E
(

r
′
)

dr (2)

where G
(

r, r
′

)

is the background dyadic Green’s function, and k and kb are the
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ordinary wavenumber and the Born-approximated wavenumber, respectively.
If the scatterer is small enough, the following equation holds approximately

Esca (r) = −ω2µ0G
(

r, r
′
)

Einc

(

r
′
)

(3)

where Einc indicates the incident field. By using this approximation, the
matched filter H can be written as

H
(

r, r
′

, r
′′
)

= u∗

r

{

−ω2µ0G
(

r, r
′
)

jωµ0G
(

r
′

, r
′′
)

Tut

}

(4)

where ∗ denotes the complex conjugate, and ut is the receive antenna effective
length. The final image is then found by applying the complex conjugate of
the measured data to the filter

S (r′) =
{

jωµ0G
(

r
′

, r
)

[−jωRur]
∗

}{

jωµ0G
(

r
′

, r
′′
)

Tut

}

. (5)

Equation (5) gives the migrated data as a function of frequency and the an-
tenna locations. The first term is the electric field generated by a current source
[−jωRur]

∗. If the time dependency of the received signal is introduced, this
source is expressed as a derivative and time reversal [−jωRur]

∗ ⇒ R
′

(−t)ur.
The field generated by this source will be refereed to as the backpropagated
electric field Ebp. The second term is simply the incident field Einc. Reintroduc-
ing the frequency dependencies and referring to Eq. (1), a complete expression
for the migrated data is now shown as

S (r′) =
N
∑

n=1

∫ M
∑

m=1

Emn,bp

(

r
′

; ω
)

En,inc

(

r
′

; ω
)

dω (6)

Emn,bp

(

r
′

; ω
)

= jωµ0G
(

rm, r
′

; ω
)

[−jωRn (ω)ur]
∗ (7)

En,inc

(

r
′

; ω
)

= jωµ0G
(

r
′

, r
′′

n; ω
)

T (ω)ut (8)

where the subscripts m and n denote the field or signal due to the nth trans-
mitter and mth receiver. These equations are now applied to bistatic survey
depicted in Fig. 3 using the FDTD technique.

The dielectric medium in this problem is simulated with electrical characteris-
tics of concrete (4) with a mean relative electrical permittivity value of 6 and
standard deviation 0.25, i.e, a non-homogeneous medium. The FDTD forward
solver is used with a source defined by a differentiated gaussian pulse with
a center frequency of f = 900MHz and bandwidth between 0.3 and 2GHz
(Fig. 4) with antennas being simulated as dipoles of infinite extension in the z
direction. A sampling interval of 20 ps was chosen to meet the stability criteria

6



...

y

z

depth

Conductor

Water

Air

radii e

e

r

r

= 6 + sd*(random)

= 1

Fig. 3. Configuration consisting of a circular cylinders located in a non-homogeneous
dielectric. The problem is composed by a set of inclusions with different properties.
The aim is, having the scattered wave, define the inclusions geometry and properties.

of the FDTD, while 1500 samples were collected for each trace corresponding
to a time interval of 30 ns. In order to control the numerical dispersion and
provide a good discretization for the inclusions, the spatial steps were chosen
as ∆x = ∆y = 12mm. The aim of this problem is, given an incident wave,
and scattered wave, to determine the physical and spatial characteristics of
the inclusion.
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Fig. 4. Pulse description.

The implementation in FDTD is accomplished by propagating the incident
field in reverse while simultaneously propagating the back propagated field
forward. As an example, consider the FDTD scenario consisted of four cylin-
ders (with different radius), conductor (1), air (2) and water (1), buried in
concrete. The raw data, collected at 31 receiver locations separated by 7.2 cm
with the transmitter located above the dielectric slab. The three traces near
the transmitter were zeroed out since the receiving and transmitting antennas
were in too close proximity. The final image occurs where the incident field
intersects the backpropagated field.
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The backpropagated field is the reference field simulated with a non-homogeneous
medium. The matched filter used an homogeneous medium with ǫ = 6 and
σ = 1mS. Three simulations with the incident field in dielectric’s far left, right
and center were done.

Figure 5 shows the final image obtained at t = 0 that provides a more exact
location of the inclusions positions. This process improves the final images
provided by the radar inspection data. In addition its implementation is very
simple.

Fig. 5. This figure shows the bistatic reverse-time migration; final data. This is the
filtered scattered wave, where the dots represent the center of the inclusions.

Migration algorithms belong to the class of non-parametric algorithms. Usu-
ally they are complex to implement but they can solve inverse problems faster
than parametric algorithms because it is not necessary to iteratively evalu-
ate the function. Even though this is a robust method for solving the above
mentioned problem, it can only identify the number of inclusions and their
centers. This algorithm assumes that the background medium is known - a
common assumption in many commercial softwares for the interpretation of
ground penetrating radar (GPR) data (5). In addition, in this simulation line
sources were used which can create a problem when the objective is to find
targets in close proximity. In real problems, this algorithm can be used to lo-
cate conductors and buried pipes but it can not find the exact characteristics
of the inclusions.

Another possible technique to solve this problem is the use of parametric algo-
rithms which are based on optimization algorithms. The parametric approach
will be briefly described in the following section.
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4 Model fitting

Model fitting method is one of the parametric imaging algorithms which ap-
plies the evaluation function and optimization algorithms. In the model fitting
method, target characteristics and location are expressed as parameters. The
parameters are updated iteratively to minimize the difference between the
observed data and the estimated data.

An incident wave and a scattered wave can be used to characterize the scat-
tering object. Usually in real world problems the incident and scattered waves
are known and it is desired to identify the scattering object. Thus, it can be
written as an optimization problem involving the scattered wave of the un-
known object E(θ0), the reference object, and the scattered wave of a test
object E(θ). Thus, θ∗, the optimal θ, is the argument that minimizes the er-
ror of the reference object scattered wave E(θ0) relative to the test object
scattered wave E(θ). Mathematically:

θ∗ = arg min f(θ) =
ns
∑

i=1

(E(θ0) − E(θ))2 (9)

where ns are the sample points where the scattered wave is measured. Note
that E(θ0) is known even though θ0 is unknown, it is measured at the receiver
antennas.

The scattered E(θ) is then generated assuming one test θ, and the optimization
procedure aims at minimizing the error between E(θ0) and E(θ) in such a way
to identify the scatter object θ0. This paper assumes that θ, and θ0, are com-
posed by a set of cylindrical inclusions, thus, θ = {(r1, c1, e1, σ1), ..., (rn, cn, en, σn)}.

The parametric approach can robustly define the number of inclusions n and
their centers ci, but it cannot find the other variables. This work uses the
parametric approach to define the radii and the physical properties of the
inclusions and, then find the other properties using the parametric approach.

The problem described in (9) is usually multi-modal, as shown in Fig. 6, where
the unknowns are the radius of two inclusions given their physical properties.
This multi-modal characteristic motivates the use of a stochastic approach
instead of a deterministic one. This problem was solved in this paper using
the Particle Swarm Optimization (PSO), which is described next.
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Fig. 6. Surface plot of Eq. (9) representing the problem of finding the radius of two
inclusions, given that their location and physical properties are known. Even in this
simple example the surface is clearly multi-modal, thus, stochastic methods must
be employed in the parametric approach.

4.1 Particle Swarm Optimization

Particle Swarm Optimization (PSO) is one of the latest evolutionary optimiza-
tion methods inspired by nature (2)(3) that includes evolutionary strategy
(ES), evolutionary programming (EP), genetic algorithm (GA), and genetic
programming (GP). PSO is based on the metaphor of social interaction and
communication such as bird flocking and fish schooling. PSO is distinctly
different from other evolutionary-type methods in that it does not use the
filtering operation (such as crossover and/or mutation), and the members of
the entire population are maintained through the search procedure so that
information is socially shared among individuals to direct the search towards
the best position in the search space.

The original intention was to graphically simulate the choreography of a group
of birds. At some point in the development of the model it was noticed that
the algorithm was in fact an optimizer. Using an empirical process many pa-
rameters were eliminated - the ones relevant to the social model - but not to
the optimization, resulting in a simple algorithm.

In a PSO algorithm, each member is called a particle, and each particle moves
around in the multi-dimensional search space with a specific velocity. Accord-
ing to the global neighborhood, each particle moves towards its best previous
position and towards the best particle in the whole swarm.

The PSO is similar to Genetic Algorithms (GAs) due to the random initial-
ization. The first difference is that each potential solution is called particles,
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instead of individuals, and they ”fly” in the search space. For each particle
of the swarm during the iterations, the positions of the best solution found
to a given particle, called pbest (particle best) is saved. The best value found
considering all the particles is also saved, and is called gbest (global best).
At each iteration the PSO is based on the change in the particle’s velocity
in the direction of its pbest and gbest, weighted by random terms. The PSO
algorithm can be described as following:

(1) Initialize the swarm of particles with random positions and velocities.
(2) For each particle calculate the objective function.
(3) Find pbest.
(4) Find gbest.
(5) Change the velocity and position of each particle according to Eqs. 10

and 11

v = v + c1 ∗ rand ∗ (pbest − x) + c2 ∗ rand ∗ (gbest − x) (10)

x = x + v (11)

(6) Return to step 2 untill a stop criterion is achieved.

The velocity of each particle in each dimension is limited by a maximum
velocity, V max. The acceleration constants c1 and c2, represent the trade-off
between the search in the direction of pbest and gbest. Usual values for c1 and
c2 are equal to 2 and V max between 10% and 20% of the variable range in
each dimension.

The proposed hybrid algorithm was used to find the inclusions’ characteristics
given a non-homogenous medium with standard deviation sd = 0.25. The
inclusions are defined in Table 1. The search space considered radii = [5 10]cm
and each inclusion could be one of the following materials: air, conductor and
water.

Once the inclusions’ positions were found using the migration algorithm this
information was used as one additional parameter for the model fitting tech-
nique. The hybrid approach that combines migration with PSO is compared
with the PSO alone for problems with one, two and three inclusions. Table 2
presents the results in terms of the number of function evaluations, taken over
an average of 10 simulations, to define the inclusion. Each function evaluation
requires about 12s of computation.

The results show that the number of function evaluations decreases signifi-
cantly when the approach proposed in this paper is applied compared to the
traditional parametric approach. It is important to remark that the migration
algorithm could not solve the whole problem alone.
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Table 1
Inverse scattering inclusion definitions

Center(x,y) [m] Radii [cm] Material

Inc1 (0.78,0.84) 6.6 Air

Inc2 (1.32,0.60) 9.0 Conductor

Inc3 (1.74,0.60) 9.6 Water

Table 2
Average number of FDTD evaluations, considering 10 tests, by the hybrid approach
proposed in this paper compared with the PSO alone.

Num. of Inclusions Hybrid PSO

1 41 670

2 475 3800

3 2100 NA

For instance, in a problem with 2 inclusions, the PSO has to find 4 variables,
while the hybrid approach proposed requires only 2. This makes the search
more efficient and, therefore, faster. Another remarkable fact is that the cost
associated increases quickly as the number of inclusions increases.

This fact limits the use of our approach in situations when the number of
inclusions is high. For the pure PSO approach the number of function eval-
uations diverges with only 3 inclusions, and it is marked as Not-Attainable,
NA, in Table 2. However, the large search region outlined in this problem
makes solving the inverse problem difficult. Although iterative optimization
approaches require long computing time, these approaches provide much bet-
ter image qualities for high-contrast objects than linear inversions such as
diffraction tomography (6)(7).

The problems presented here show favorable results but real-world applica-
tions require ”black-box” solutions. This can be done using Artificial Neural
Networks (ANN) to improve the detection of buried cylinders. The next sec-
tion describes the use of the Parallel Layer Perceptron (PLP) (10) architecture
for this purpose. A new approach using PLP and Principal Component Anal-
ysis (PCA) is proposed to compress the radar data in order to train ANN
faster.

5 Neural networks

The brain can be viewed as a highly complex, nonlinear parallel computer
that can compute in an entirely different way compared with a conventional
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computer. The brain is a complex network with approximately 1010 neurons
having over 6 ·1013 interconnections. Neural events occur at millisecond speeds
whereas events in common computers occur in less than nanoseconds. How-
ever, the brain can compensates this slow speed through its massive number
of neurons and interconnections. For example, the human brain can recognize
a familiar face embedded in an unfamiliar scene in 100-200 ms, whereas a
computer can take some hours.

Recognition of the brain’s impressive power has led to interest in the de-
velopment of Artificial Neural Network (ANN) technology. ANN are parallel
computational models comprised of densely interconnected adaptive process-
ing units. A very important feature of this technology is its adaptive nature,
whereby the problem is solved by feeding the system with examples as in the
human brain. This feature makes such computational models very appealing
in application where one has little or incomplete understanding of the problem
to be solved but where training data are readily available. Another key feature
is the intrinsic parallel architecture that allows fast computation of solutions.

ANN can be used in a wide range of applications including pattern classifi-
cation, speech synthesis and recognition, adaptive interfaces between humans
and complex physical systems, function approximation, image compression,
associative memory, clustering, forecasting and prediction, combinatorial op-
timization and nonlinear system modeling, and control. In the context of this
work the ANN are used in Intelligent Signal Processing (ISP) which is charac-
terized by the use of model free (intelligent) methods based on training data.
In addition, ISP implies the ability to extract system information from the ex-
ample data alone and is less dependent on a priori environmental and system
information or simply, is less unstable.

A formal definition of an ANN according to (16) is: ”A neural network is
a massively parallel distributed processor that has a natural propensity for
storing experiential knowledge and making it available for use. It resembles
the brain in two respects:

(1) Knowledge is acquired by the network through a learning process.
(2) Interneuron connection strengths known as synaptic weights are used to

store knowledge.”

Neurons are the basic building blocks that make up the ANN. They are usually
made to be all similar and can be interconnected in various ways to make a
network. The ANN achieves its ability to learn and then recall that learning
through the weighted interconnections of those neurons. The interconnection
architecture can be very different for different types of networks. Architectures
can vary from different types of feedforward to recurrent structures.

The study focused on the development and performance of a comprehensive
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ANN model for the analysis of jointed concrete slabs are presented in (18) and
(19). The inverse scattering problem using parallel networks and networks with
multiple outputs for an homogenous host medium was presented in (8) and
(9). In (9) it is shown that both configurations could deliver reasonable and
very similar results using input parameters from the scattered wave defined as:
1) the peak amplitude of the reflected field; 2) the delay of the first reflected
echo, calculated with respect to the time of arrival, at the receiving point,
of the direct field); 3) a measure of the duration of the scattered field (see
Fig. 7). This paper considers the case of non-homogenous host medium and,
surprisingly, using a network with multiple outputs and parallel networks were
not adequate to estimate the inclusion geometry.

Therefore, to solve a non-homogenous problem the parameters presented in
(9) are not sufficient. To overcome this difficulty, we implemented an algorithm
to ”squeeze” the scattered wave in order to collect more information about
the scatterer itself using Principal Component Analysis (PCA).

The scattered wave is obtained using FDTD. The problem can be summarized
as the use of an incident wave and a scattered wave to characterize the scat-
tering object. Usually in real world problems the incident and scattered waves
are known and it is desired to identify the scattering object.

This paper addresses a 2D problem where a cylinder of unknown character-
istics is buried in a non-homogeneous dielectric. The incident and scattered
wave are simulated using FDTD to train the ANN. The dielectric medium
uses the electrical characteristics of concrete (4) with a mean relative electri-
cal permittivity value of 6 and standard deviation 0.15, i.e, a non-homogenous
medium. The investigation domain is illuminated by a differentiated gaussian
pulse depicted in Fig. 4. In order to control the numerical dispersion and pro-
vide good discretization for the inclusions the spatial steps were chosen as
∆x = ∆y = 6mm. The aim of this problem is, given an incident wave, Wi,
and scattered wave, Ws, to determine the radii and depth of the inclusion.
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To train the ANN a set of different inclusion examples, say S(.), for different
radius, depths, ǫr and σ were generated.

The ANN has been trained with a set of different inclusion examples, con-
structed by varying the radii in the range [0.02÷ 0.1] m according to the rule
radii = 0.02 + i × 0.001, i = 0, .., 80, with ǫr in the range [1 ÷ 10], according
to the rule ǫr = 1 + i× 1, i = 0, ..., 9, σ in the range [0÷ 4000] S/m according
to the rule σ = 0 + i× 500, i = 0, ..., 8 and depth in the range [0.05÷ 0.25] m
according to the rule depth = 0.05 + i × 0.025, i = 0, ..., 9 summing a total of
1640 examples.

The Ws is the only information available in the real cases, therefore, it has
to be used to characterize the inclusion. In this paper 1200 time steps were
considered, thus, a problem in R

1200 must be solved. The ANNs suffer from
a phenomenon called the curse of dimensionality, i.e., the learning process
becomes slower and less effective. In the next section the curse of dimension-
ality will be introduced and, afterwards, it will be followed by the Principal
Component Analysis (PCA) as an effective way to reduce the dimensionality.

5.1 The curse of dimensionality

One phenomenon that takes place in high dimensional data is the sparsity
of the sample points (20). Given a data set S with T data points uniformly
distributed in a p-dimensional unit sphere centered at the origin, the median
distance given from the origin to the closest sample is then given by:

d(p, T ) =

(

1 −
11/T

2

)1/p

. (12)

In a sample size of 1640 and 1200 dimensions, d(1200, 1640) = 0.9935, which
means that the samples are closer to the boundary of the space than to any
other data point. Moreover, for an ANFIS topology the number of rules R
for a system with p inputs and P premisses is R = P p, hence it increases
exponentially with the dimension p, which makes the learning slow (14). The
following section presents the Principal Component Analysis, which will be
used for dimensional reduction.

5.2 Principal Component Analysis

In some situations, the dimension of the input vector is large, but the compo-
nents of the vectors are highly correlated (redundant). Principal Component
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Analysis (PCA) is a way of identifying patterns in data, and expressing the
data in such a way as to highlight their similarities and differences. The main
advantage of PCA is that once these patterns in the data are found, the data
can be compressed, i.e. by reducing the number of dimensions, without much
loss of information. This technique is commonly used in image compression.

This technique has three effects: it orthogonalizes the components of the input
vectors (so that they are uncorrelated with each other), it orders the resulting
orthogonal components (principal components) so that those with the largest
variation come first, and it eliminates those components that contribute the
least to the variation in the data set.

The input vectors are first normalized so that they have zero mean and unity
variance. For PCA to work properly, one has to subtract the mean from each of
the data dimensions. The PCA uses a linear mapping of a given set of samples
Sq = {x1, ..., xT |xi ∈ R

p} to construct a new data set Sp = {y1, ..., yT |yi ∈ R
q},

where q ≤ p.

Another interpretation of the PCA is the construction of directions that maxi-
mize the variance. The transformation Vq generates a projection space in which
the covariance matrix is diagonal. The diagonal covariance matrix implies that
the variance of a variable with itself is maximized while it is minimized with
respect to any other variable. Thus, the q variables with higher variance in
the new space should be kept. The principal components of a set of data in
R

p provide a sequence of best linear approximations to that data, of all ranks
q ≤ p.

The problem considered here is initially in R
1200. It can be projected in a

R
286 without any loss of information, i.e., 100% of the data variance was kept.

Considering 99.99% of the variance, the variables can be projected in R
139

and in R
51 when 99% of the original variance is kept. These are remarkable

reductions that help in reducing the curse of dimensionality.

5.3 The expected error

The model structure problem is given by choosing among a set of possible
functions f(w, x), w ∈ Λ 1 , the possible Parallel Layer Perceptron (PLP) in the
present case, the one that optimizes a given quality criterion. Mathematically

w∗ = arg min
w

R(f(w, x)) (13)

1 In the PLP case Λ is the set of Real numbers but, in general, it can be a set of
scalar quantities, a set of vectors, or even a set of abstract elements (22).
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where R(.) 2 is a pre-defined quality criterion and w∗ is the argument that
minimizes Eq. 13. To apply the selected model structure, it is required to de-
fine the best approximation of the desired output, d, therefore, a measure of
discrepancy, L(.), between the desired and obtained outputs should be em-
ployed. The expected risk (error) between the desired and the approximate
outputs can be expressed (22) as:

R(w) =
∫

L(d, f(x,w))dF (x, d). (14)

The expected risk R(w) measures the expected test error for the neural net-
work, i.e., the ANN performance. The aim of the machine the learning pro-
cedure aims to find f(w, x), w ∈ Λ, that minimizes the risk functional in Eq.
14. The integral cannot be evaluated directly since the distribution F (x, d) is
unknown and the only available information is the training set. The training
set is made of T random vectors zi = (xi, di), i = 1, ..., T , independently and
identically distributed (i.i.d) according to some unknown but fixed probability
distribution F (z). The training set S can be written as:

S = ((x1, d1), ..., (xT , dT )). (15)

The risk R(.) defined in Eq. (14) can be asymptotically approximated, given
some consistence conditions (22), when the number of training set samples
T tends to infinity. Of course such an infinite size set is not available. To
overcome this problem, resampling techniques can be used to approximate
the expected risk.

The simplest resampling technique is the Hold Out (HO), also called external
validation or simply validation. It consists of removing samples from the initial
learning set, and using them for validation. That was used in many works, by
dividing the set in training and test set. In this paper we employed the k-fold
cross-validation. For k-fold cross-validation, the training data S is divided
into k sets of approximately the same size, in such a way that the learning
takes place in k − 1 sets and the model is independently validated in the
remaining set. This independence in the validation process avoids the inverse
crime of using the same structure in the learning and training process. This
is performed k times using all the k folds as validation sets once. Fig. 8 shows
a 3-fold cross-validation. The estimate of a given parameter when resampling
techniques are used is the mean of the statistics evaluated on each model over
the corresponding test data. The k-fold cross-validation uses the data set more
effectively and is employed in this paper to evaluated the expected risk.

2 The risk R(w) =
∫

L(d, f(x, w))dF (x, d) can be written using the joint probability
of x and d p(x, d), R(w) =

∫

L(d, f(x, w))p(x, d)dx dd
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Training set Test set

Classifier Evaluation Classifier Evaluation Classifier Evaluation

Average

Data set

Fig. 8. This figure shows a 3-fold cross-validation. The two sets labeled as train are
used to train the neural network and the error is evaluated on the test set. After all
the folders are used once as test set the expected risk is estimated as the average
error of each set.

S(ra,de, , )e sr
S(ra,de, , W )e s,r s

S(ra,de, , W )e s,r pca

S (W ,d=?)Test pca

S (W ,d)Train pca

FDTD PCA

k-fold PLP

Expected

Error=R( )w~

Fig. 9. This figure shows an overview of the detection system employed in this paper.
Firstly, given a set S of radius (ra), depths (de), ǫr and σ a scattered wave (Ws ∈ R

p)
is calculated using FDTD. Afterwards, given q < p a dimensional reduction is
applied in Ws generating Wpca ∈ R

q. Nextly, the Wpca is used in a k-fold system
such that S1 is used to estimate the expected error, Eq. 14, and Sk−1 is used to adapt
the PLP network parameters. In this work a 10-fold cross-validation was employed.

5.4 Neural Networks results

To evaluate the performance of the studied techniques the following error (loss)
figure is used:

L(dr) =
|dt − dr|

dr

, (16)

where d is the unknown variable (depth or radius), the subscript t indicates
the real value of the variable, and the subscript r indicates the value recon-
structed by the neural network. This measures the percentage deviation of the
reconstructed object from the real one (desired object). The expected value
of the test risk, Eq. 14, given the loss functional defined in Eq. 16 was calcu-
lated using the 10-fold cross-validation. In Tables 3 and 5 are shown the mean
deviation, mean(L), the maximum deviation, max(L) and the train and test
times considering the dimension reduction to q = 51, 139 and 286. The system
developed in this paper using a PLP network trained with the scattered wave
calculated with dimensional reduction based on PCA is presented in Fig. 9.
The PLP topology is shown in Fig. 10 (10). Further details concern-
ing the PLP topology, including its computational cost compared to
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other standard topologies, are presented in (17).

Fig. 10. The Parallel Layer Perceptron (PLP) Topology.

The PLP was trained with two parallel layers, one linear and the
other with sigmoidal activation function. The PLP network was
trained using a combination of the Least-Squares-Estimate (LSE)
to define the linear parameters, as in (10), and the Levenberg-
Marquardt algorithm (LMA) to the non-linear parameters. The
learning rate was adaptively defined as in (14) and no momentum
term was added. The convergence was considered given a training
error bellow 0.001 or 15 epochs. The number of neurons was deter-
mined using a 3-fold cross validation in the training set, i.e., 9 folds
define the training set, and a 3-fold cross validation was applied on
them to define the number of neurons. The 10-th folder was used
to evaluate the expected error. The total number of samples is 1640
and they are divide as in the folders as aforementioned.

Table 3
Results of the Relative Error considering the depth prediction.

Configuration mean(L) max(L) train(s) test(s)

PLP (286) 0.001% 0.04% 8.44 0.016

PLP (139) 0.003% 0.15% 4.48 0.01

PLP (51) 1% 20% 6.2 0.011

Table 4 presents the results considering the Relative Error in the
prediction of the depth given 286 dimensions, varying the number
of neurons. It is clear that the error does not vary much as the
number of neurons changes. The optimum is achieved for 9 neurons.
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The network start overfitting afterwards. The number of neurons
were determined using cross-validation. However, the results given
different numbers of neurons are also acceptable results, which can
be used in a real-world problem.

Table 4
Results of the Relative Error considering the depth prediction given 286 dimensions,
varying the number of neurons.

Configuration No. Neurons mean(L) max(L)

PLP (286) 6 0.009% 0.27%

PLP (286) 7 0.008% 0.16%

PLP (286) 8 0.003% 0.05%

PLP (286) 9 0.001% 0.04%

PLP (286) 10 0.004% 0.09%

PLP (286) 11 0.004% 0.09%

PLP (286) 12 0.005% 0.10%

PLP (286) 13 0.006% 0.15%

PLP (286) 14 0.005% 0.16%

PLP (286) 15 0.008% 0.10%

The error to each given sample is presented in Fig. 11 considering
the 9 neurons configuration. All the validation data from each fold of
the cross validation method is presented, i.e., the error is shown to
a given sample when it is in the validation folder, not in the training
one.
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Fig. 11. This shows a characteristic Percentual Absolute Error considering the 9
Neurons configuration and the cross validation.

The results of Tables 3 and 5 show that the proposed system which combines
a PCA pre-processor with a PLP is a very promising idea for assessment of
inclusion in non-homogenous concrete structures.
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Table 5
Results of the Relative Error for radius prediction.

Configuration mean(L) max(L) train(s) test(s)

PLP (286) 0.022% 0.94% 7.5 0.03

PLP (139) 1% 20% 11.1 0.018

PLP (51) 1% 22% 6.1 0.013

Retaining only 286 of the initial 1200 points the information is still represented
without any loss, thus, 100% of the data variance was kept. The reduction to
139 and 51 dimensions resulted in 99.99% and 99% of the original variance
respectively. It is clear in the results that it is harder to predict the radii than
the depth. This can be physically understood by the fact that the antenna
position is in front of the objects.

The non-homogeneous problem was also solved using the approach in (9).
The two different configurations proposed to solve this inverse problem were
a network with multiple outputs, and independent networks in parallel. The
network with multiple outputs, called here C1, calculates simultaneously the
depth and radii given as d1, d2 and d3. The parallel networks, called here C2,
calculate independently each output, given the measured variables d1, d2 and d3.
In C3 in which the depth is calculated using d1, d2 and d3 and the radii are
calculated in a second step (asynchronously) using also the calculated depth.

As all the techniques apply similar mechanism to reconstruct the depth their
error are also very similar, as indicated in the second column of Table 6. It can

Table 6
Results considering the two configurations of the Neural Networks studied in (Caorsi
et al., 2005).

Configuration Err(depth) Err(radii)

C1 5.8% 12.9%

C2 5.7% 13.4%

C3 5.7% 5.8%

be seen in Table 6 that an important error arises when applying this technique
to a non-homogeneous problem. These results support the initiative of using
a PLP network trained with the scattered wave calculated with dimensional
reduction based on PCA.

Dimensional reduction was also considered in (9) but was done empirically
using only three features, the peak amplitude of the reflected field; the delay
of the first reflected echo, calculated with respect to the time of arrival (at
the receiving point) of the direct field and a measure of the duration of the
scattered field. The error average of the best configuration presented in (9) was
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1.46% for the depth reconstruction which is higher than the result presented
in this paper.

6 Conclusion

A number of important issues have been discussed in this paper. First the
definition of estimation schemes for microwave imaging was outlined. The con-
cept of inverse problem was defined with respect to the image reconstruction.
Three 2D reconstruction algorithms were implemented and new configurations
were proposed including the use of Artificial Neural Networks and a hybrid
RTMA/PSO. Numerical simulations, with different types of inclusions were
presented to assess the accuracy and efficiency of these algorithms for image
reconstruction in real-world settings. For all cases, the targets were success-
fully reconstructed with the 2D algorithms and the convergence was assessed
in terms of the relative field error.

The main strength of the migration algorithm (non-parametric class) is its
robustness to find the number of inclusions and their centers. However, it can-
not identify the other physical properties that are of interest as depth and σ.
This algorithm assumes that the background medium is known - a common
assumption in many commercial softwares for the interpretation of ground
penetrating radar (GPR) data (5). In addition, in this simulation line sources
were used which can create a problem when the objective is to find targets in
close proximity. In real problems, this algorithm can be used to locate con-
ductors and buried pipes but it can not find the exact characteristics of the
inclusions. The PSO (parametric class) can solve the general problem as the
number of unknown are easily included in the formulation. Its main drawback
is the computational time as it tends to require many objective function eval-
uations. The non-parametric algorithms are more complex to implement than
the parametric ones but usually faster, as it does not require iterative solu-
tions. This paper has proposed a hybrid parametric/non-parametric method
which takes advantages of the algorithms main strengths. The hybrid approach
applies a non-parametric step to identify the number of inclusions and their
centers and the parametric one to identify the other parameters. The results
indicated that this is better than using the method isolated.

The use of intelligent systems was also investigate in this work. Artificial
Neural Networks were applied to estimate the scatter model using a training
data set. It was discussed the curse of dimensionality and the use of PCA to
decrease this shortcoming. Some remarkable results were presented. The ANN
can be viewed as an off-line parametric model, instead of on-line as for the
PSO case. For the ANN a data set, which is usually expensive to compute,
is extracted from the forward model and it is used in the training (model
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estimation) step. In practical terms, an equipment with ANN would required
a huge off-line computational effort in the design process but little on-line
effort after the scattered wave is obtained in the field (the parameters of the
ANN is found before the scattered field is measured). The PSO, on the other
hand, needs no off-line preparation, but the model parameters are defined
after the scattered wave is obtained. Even though the PSO needs less function
evaluation to find the model, as it already knows the scattered wave, it runs
on-line, therefore, the operator has to wait a substantial time to get the result.
The PSO is also more precise than the ANN as it can run until the objective
function gets to a desired level.

Ideally, it would be interesting to combine all the three techniques to obtain
a robust and fast equipment to the detection and characterization of inclu-
sions in concrete structures. Finding the most suitable ways to combine these
technique is an ongoing research.

In conclusion, significant algorithmic flexibilities utilizing 2D based algorithm
were demonstrated in terms of accommodating various forms of inclusions in
single and iterative reconstruction.
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