Computers & Elect. Engng Vol. 16, No. 3, pp. 139-158, 1990 0045-7906/90 $3.00 + 0.00
Printed in Great Britain Pergamon Press pic

A DYNAMICALLY SEGMENTED BUS ARCHITECTURE

Xu BAIQIANG and NATHAN IDA
Electrical Engineering Department, The University of Akron, Akron, OH 44325, U.S.A.

(Received 27 February 1989; accepted in revised form 23 May 1990)

Abstract—This work presents a dynamically segmented bus (DS-Bus) architecture for disturbed systems
as an alternative to existing architectures, such as multi-bus, multi-stage network, or hyper-cube
connection. Design considerations of the DS-Bus arbiter, as the key component on the DS-Bus, are
discussed. A specific design of the arbiter is given with a resolution time proportional to the number of
grants. Analysis of DS-Bus contention is carried out by analytic methods and by simulation. Formulas
are derived for parameters such as accept rate, capacity, inter-communication delay, and bandwidth of
the DS-Bus. As with other architectures, the performance of the DS-Bus is application sensitive. It will
be shown, by comparison, that the DS-Bus architecture is a good approach to organize a large scale
parallel computing machine. Finally, a large scale DS-Bus system design is proposed.

1. INTRODUCTION

A single bus is a potential bottleneck for multiprocessor systems and limits improvement of its
system performance. However, most commercial multiprocessor systems employ this conventional
bus structures. This approach results in systems which can only accommodate a few dozen
processors. A recent study [1] showed that system performance can be improved considerably by
increasing the capability of the bus. This paper explores a possible enhancement to conventional
bus structures to support large numbers of processors.

In recent years, multistage network architectures were discussed extensively. One of the most
serious problems with these architectures was observed by Pfister and Norton (2] in the form of
so-called hot-spot contentions in shuffle-exchange networks. Their model shows that the effective
bandwidth of the memory system falls off dramatically as references to a “hot” memory bank
increase, or as the number of processors increases. This generic problem arises from the nature
of shared memories, and therefore is intrinsic to multiprocessor systems. Among others, the
indirect means of communication increases the utility of the interconnection network and memory
banks since one communication needs two shared memory accesses. The sender and receiver
compete with each other for the same path and the same memory banks during communication
(Fig. 1).

In a distributed system, there are no shared memory banks and direct communication is
established by either packet or circuit switching networks. The hyper-cube is one example. This
kind of network can support full range of communication rates without saturation. The price for
this is longer communication time and much more complicated hardware.

The DS-Bus architecture proposed here is an attempt to retain both short communication time
and the simplicity of a bus structure while achieving some characteristics of hyper cube distributed
systems, namely, high communication rate and direct communication.

2. STRUCTURE OF THE DS-BUS

Figure 2 shows the basic configuration of a DS-Bus system in which N, the number of processing
clements, is equal to eight. The ordering of the PE’s, switches and bus segments is arbitrary but
the sequence in Fig. 2 will be used throughout this work. '

The DS-Bus

Three groups of signals are defined on the DS-Bus as in Fig. 3(a). These are message, arbitration,
and control signals. Message signals consist of Data and data-ID. The data is the information to
be transferred; the data-ID is the identification of the data. Unlike a conventional bus, the data-ID

139

140 Xu BAIQIANG and NATHAN IDA

Memory Banks

1.

S k=

A
‘*‘i:\\x

Multi—-stage Network

Receiver
Sender

PEi| +++ |PEj

Processing Elements

Fig. 1. Contention for network and memory banks between Sender and Recciver in a multi-stage
architecture.

0 7 6 5

S A e

0 T‘\ 7

Sj;\ Arbiter >{;S:)

e s
15

15
(5] * 5] * =] * [

a_ﬂiug)
]

o
£

o[—

7]
PE PE PE PE
1 2 3 4
Fig. 2. The basic DS-Bus architecture (N = 8).

A dynamically segmented bus architecture

T | I ZITTIITT oata Fieis

{ZZZZZZZZEB T g‘m ID Field

seswenson J777 771 I TTTTTIETTITITTITIIIIITTL. s vena

contrat 77T T TTITITT T sigmes vicsa
@

Data | ID | L | R | Op. Code

®)
Fig. 3. The bus and Request format. (a) Bus layout. (b) Request format layout.

is necessary in order to have meaningful data. The arbitration signals have Left and Right which
are used together to specify the range on which the communication takes place. Both are the relative
locations on the bus. For instance, PE6 requests to send a message to PE11. Bus segments from
6 to 11 are needed in order to accomplish the communication. Consequently, Right is 11 and Left
is 6.

Three operations are defined on the DS-Bus: Write, Read, and Broadcast. The corresponding
signals belong to the control signal group. The Write operation transfers a message from initiator
to recipient; the Read operation transfers a message in the opposite direction. Both are one to
one operations. The Broadcast operation transfers a message from initiator to PE’s in the range
except itself. This is a one to many operation. It is obvious that broadcast is more efficient than
write.

The operation of the DS-Bus has an arbitration and a transfer phase. An arbitration phase is
the period in which the arbiter resolves the conflicts and assigns a bus partition to requests. In a
transfer phase, the communications granted during the arbitration phase take place. Arbitration
and transfer phases can be performed either in sequence or in pipeline. The later should be chosen
whenever possible.

The request signals asserted on the bus by a PE have a format as defined in Fig. 3(b).

The switches

The bus is segmented by N switching devices (S). There is no direct connection between any two
bus segments. Two neighboring bus segments can be connected only if the switch between them
is on. Since each PE is connected to the corresponding bus segment only, connection among PE’s
is the same as connection among bus segments, and therefore, is controlled by switches. In the
extreme, all PE’s can work separately (all switches are off); or all PE’s are coupled tightly by one
common bus (all switches are on). However, in most cases, these switches should configure the
DS-Bus into multiple bus sections, to support concurrent communications. Thus, the switches
establish and decouple paths among PE’s as the communication requests change dynamically. Also,
it is interesting to note that the DS-Bus is a message path, shared by multiple PE’s. The physical
structure of the path is similar with a conventional bus except for its segmented form. Thus the
terminology: “Dynamically Segmented Bus™.

The arbiter

The arbiter role is to make the switches intelligent enough to accomplish the functions specified
above. It finds a set of non-conflicting requests and sets the switches accordingly. Since the arbiter
is required to resolve multiple conflicts among multiple communication requests, it is necessary to
examine the conflicts on the DS-Bus before discussing the arbiter any further.

142 Xu BAIQIANG and NATHAN IDa

2.1. DS-Bus contentions and resolution

On the DS-Bus, a PE requests a section of the bus in order to communicate with another PE
or a group of PE’s. A conflict exists in the case two bus section requests at the same time are
overlapping. For instance, PE5 requests bus section from segment 2 to 7. If, at this time, PES
requests bus section from segment 6 to 8, a conflict arises due to common segments 6 and 7. It
is obvious that these two communications can not be accomplished in one transfer phase. Thus,
some simultaneous requests may not be granted due to overlapping bus sections requested and
should be deferred.

The contentions on the DS-Bus put constraints on the arbiter. In general, the constraints are:

(1) Multiple selections;

(2) Assignment of a bus partition to winners;
(3) Reasonable assignment;

(4) Fair arbitration.

The first constraint is fundamental. The DS-Bus can support multiple simultaneous communi-
cations only if the arbiter is capable of selecting multiple requests. The second emphasizes the
condition of bus segment assignment: one bus segment can be assigned to only one PE in one
resolution phase. This raises the two-side arbitration problem. Imagining the DS-Bus as a loop,
the right side of a section is the side which can be reached from the left side counter-clockwise
along the section. With the definition of Right and Left in mind, a request can conflict with
other requests at both right and left sides because of the sectional nature of the requests. Both sides
of a request, to be granted, can not overlap with the bus section or sections which have been
granted.

Generally, the resolution can be accomplished as following. Let S be the union of all segments
granted, R, be the set that includes the segments which PE, is requesting, R the set of all PE’s that
are requesting bus sections, but have not been granted yet. The order in R is significant. Assume
R preserves the ordering of the following:

(2,5 +1 N, 2,. ,5=-1)

Also, let H be a subset of R, such that for any i in H, the intersection of S and R, is the empty
set Q. Then,

R:=(P1,P2,...,Pn)
; PE’s with numbers P1, P2, are requesting
H:=R
S=R, k =Pl
; choose s by criterion 1
Assign bus section R, to PE,
R:=R — (k)
While H # Q do
Update H, Assign bus section R, to PE,
; choose j from H by criterion 2
S$:=§+ R,
R:=R - R,
End of while.

Criteria 1 and 2 above are not specified yet, and are subject to change to achieve optimal
performance. They can be used together to meet constraints 3 and 4. However, for the sake of
simplicity, criterion 1 is chosen to make the resolution fair. Criterion 2 is chosen to optimize the
performance of the arbiter. Some of the policies for criterion 1 are:

(1) Fixed: let s:=C. Typically C =0;

(2) Rotational: let s:=(k + C) MOD N at the kth arbitration phase;

(3) Random: let 5:=C, at the kth arbitration phase. Where C and C; are arbitrary integers
between 0 and N — 1, where N is the number of PE’s on the DS-Bus.

A dynamically segmented bus architecture 143

Some of the policies for criterion 2 are:

(1) Priority: let j:=max(P(H)). Where symbol P is the transformation from a vector to
another vector if H is treated as a vector.
(2) Random: let j be any element in H;

However, there are two optimal criteria for the DS-Bus:

(1) Maximum utility criterion: choose a bus partition such that | S| is maximized at the end
of the resolution cycle (maximum DS-Bus utility).

(2) Maximum response criterion: choose a bus partition such that | R| is maximized at the
end of the resolution cycle (greatest number of PE’s can be granted).

| #| is a operation taking the size of the set.

To illustrate the arbitration process, an iterative arbitration is described below as an example.
In such a process, resolution may begin from one particular PE, say PE,, which is assigned the
highest priority by the arbiter. Then the process scans over the entire bus counter-clockwise in an
iterative fashion. The following is an algorithm which formally defines steps that may be involved
in resolution.

(1) Chose a starting point by criterion 1, and take the Left value and the Right value of the
first request encountered during the process as the left boundary and the right boundary
of the granted bus section. The granted bus section refers to the section on the DS-Bus
which accommodates all requests granted so far. Go to step 4;

(2) Check the Left and Right: compare Left and Right of all requests, which have not been
granted yet, against the right and left boundary of the granted bus section. Figure 4 shows
various situations between requests and the granted bus section. In all these cases, any
request with Right less than the left boundary and Left greater than the right boundary
can be granted for communication. The only exception is in case 1 in which either Left
is greater than the right boundary or Right is less than the left boundary. This also
satisfies the requirement for grant.

(3) Resolution: Adopt a criterion to select one request from those that are successful in step
2, and extend the granted bus section to include the bus section just resolved. If no
matching is found in step 2, go to step §;

(4) Set the setting register: set the bits of the setting register within the bus section just
resolved except on the two sides. The information stored in the setting register defines
the switch setting for the next transfer phase. If a bit is set, the corresponding switch will
be on. Repeat from step 2;

(5) End of resolution phase.

2.2. Arbiter design

It is clear that the performance of the arbiter can greatly influence the performance of the system.
Serial comparison involved in resolution may considerably increase the period of the bus cycle even
though it can be partially overlapped with data transfer.

There are several trade-offs available during the design process. The main options are:

(1) Central or distributed organization;
(2) Synchronous or asynchronous access;
(3) Fixed priority, dynamic priority, or optimal policy.

Accordingly, there are 12 distinct kinds of arbiters. Because of the complexity and difficulty in
layout of the arbiter, distributing it into many modules is a good organization to consider. Each
granted request can be carried out as soon as the requested bus section is free and the beginning
of a transfer activates the resolution to the bus section in asynchronous access mode. This requires
an even more complex arbiter while asynchronous access may not be necessary for optimal
performance. Once again, criterion 2 mentioned in Section 2.1 is critical in the trade-off between
complexity and performance of the arbiter.

144 Xu BAIQIANG and NATHAN IDa

PEO

A
(a) Case 1: LB<RB, LR<RR (b) Case 2: LB<RB, RR<LR
Require: LR>RB, or RR<LB Require: LR>RB and RR<LB

(c) Case 1: LB>RB, LR<RR (d) Case 2: LB>RB, RR<LR
Require: LR>RB and RR<LB all are conflicting
A: request(s) can be accepted B: request(s) to be deferred
LB:the left boundary RB:the right boundary

LR:Left RR:Right

Fig. 4. Variant cases of requests and the granted Bus section.

Instead of describing each kind of arbiter in detail, one practical implementation of the arbiter
is proposed. Figure 5 shows a particular distributed design in synchronous access mode. The
resolution process of the arbiter follows the algorithm described in the previous section. In
particular, rotation policy is adopted for criterion 1; priority policy for criterion 2.

The arbiter in Fig. 5 is distributed into N individual arbiter modules, one for each PE, and a
central control unit. Each module consists of C, L, R, LB, ID, G, and S registers as in Fig. 5(a).
They are used to store request (C), Left (L), Right (R), left boundary (LB), ordering number (ID),
Grant (G), and Switch setting (S). There are two comparators: C, for resolution compare, C, for
switch setting compare. The control unit consists of a counter and a priority logic.

When an arbitration cycle starts, the control unit first asserts a G signal to the arbiter module
with highest request priority. Module s is chosen in a rotational fashion. In this case, the
specialization of criterion 1 can be easily implemented by a counter in the control unit. The first
G signal can be generated from the C signal as illustrated in Fig. 5(b). At the next clock cycle,
the module, which has received a G signal at the last cycle, places the Left and Right on the L/R
fields for both resolution and switch setting compare. The resolution compare generates a matching
signal (M in Fig. 5) at each C, in a way defined in step 2 of the resolution algorithm by using its
R and L; the left (in its LB register) and right boundary (the value of R on ths bus is exactly the
same as the right boundary). The value of the left boundary is latched into the LB registers by
a signal asserted by the control unit (omitted in Fig. 5). The M signals asserted by modules are
led to the control unit. In the control unit, the M signals are processed by a barrel shifter, a priority
encoder, a decoder, and another barrel shifter (opposite direction). Finally, a G signal is generated
and fed back to the proper arbiter module and stored in the G register. The corresponding PE will
gain a section of the DS-Bus in the next transfer phase. In the meantime, each module compares

A dynamically segmented bus architecture 145

to central unit From central unit
ch AM |G
L
R 14 ‘ | —
lyy 11y
I 1y vy
c1 4 || c2 H
—U vy v by
R | LB| G ID S

C/M signal from arbiter modules

1y '

Barul %lnftu ‘ “‘
l 'y - Y

Y
| Pnont - -) .

Barrel Shifter i‘—

G sngnal to arbiter modules

®)
Fig. 5. Arbiter design (register lcvel). (a) The Arbiter module, (b) the central unit.

its ID with values from L and R ficlds at its C,, When R > ID > L, the corresponding S register
is set; otherwise, there is no response. At the end of the resolution phase, the contents of the S
registers determine the switch setting for the next transfer phase, and so on.

This implementation has a non-deterministic maximum resolution time, which is linearly
proportional to the number of grants. Each grant, except the first, takes one clock cycle. In each
cycle, the longest path is releasing the R and L on the DS-Bus, resolution comparison and priority
selection. If each operation takes 3A, where A is a gate delay, the minimum period of the clock
is 9A. The total resolution time would be approximately 9A- M, where M is the number of grants.
Since the resolution time depends heavily on the number of grants, the time interval for a bus cycle
may be determined on a cycle-by-cycle basis.

3. DS-BUS MODELING

In order to study the performance of the DS-Bus, analytic models will be developed while
computer simulation is employed as reference for comparison.

3.1. The basic model
The following conditions are assumed for the basic model:

(1) PE’s generate independent communication requests;
(2) Requests at any bus cycle are independent of requests at previous bus cycles;
(3) Request rates are uniform for all PE’s and have a value r;

CARE W)—C

146 Xu BAIQIANG and NaTHAN IDA

(4) Compared to a bus section requested by a PE, the total length of the DS-Bus is much
larger.

(5) Each communication requests a bus section of length L + 1, which is equally distributed
on either side of each PE.

With these assumptions, it is safe to study a particular PE rather than all PE’s on the DS-Bus
at the same time. (In the appendix the constraint in 5 is removed.) As an example, if PE, requests
communication (Fig. 6), and a request within distance (defined as the smaller number of bus
segments separating the two PE’s) L on the left side of PE, (the range is indicated by FR) has been
accepted by the arbiter, then the current request will be deferred until the next resolution cycle
[Fig. 6(b)]. On the other hand, if there is no request in FR, or requests in FR are deferred due
to conflicts, the request will be granted. Requests more than a distance L from PE, have no influence
on the current request [see Fig. 6(a)]. _

If Pr denotes the probability of accepting a request (accept rate), then the event that a PE in
FR will access the bus has a probability of r - Pr. Altogether there are L such probabilities. One
such occurrence will deny the request of PE,. Thus

Pr=1—L-r-Pr a
is the probability of the DS-Bus accepting the request. Rearranging equation (1)

1

Preysrr : s

Equation (2) explicitly describes the accept rate for each PE. This is then the basic model. Figure

7 shows the curve of Pr against r for L =2, 4, 8 and N = 32. As expected, the influence of the

requested bus section size upon the accept rate is rather strong. The Pr decreases very sharply as

L increases. In Fig. 8, a comparison is made for equation (2) against simulation results derived

under the same assumptions. Surprisingly, the analytic model of Pr fits the simulation results quite

well although it does not take the total length of the DS-Bus into account. The simulation results

in Fig. 8 show that the accept rate is insensitive to the number of PE’s when N exceeds 10 for L = 4.

This helps clarify assumption 4. By “much larger”, the assumption really says that the length effect
can be neglected if the DS-Bus is about threc times as long as the bus sections requested.

Vot a7 S

P n—}

This request
has no influence

request of PE(i)

®)

v [

Wl

A\ /
\'4
a accepted overlapping :
request request of PE(i)
®)
Fig. 6. Analysis of acceptance.

/

A dynamically segmented bus architecture 147

—

\\,\ -
\\\\
\,,_b -~
~—_ 1
i T
0.2+ ~—— ¢ —_—
<

0 1\— ——

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Request Rate

Fig. 7. Influence of Lon Pr. (a) L =2, (b) L =4 and (c) L = 8.

When the request rate r is large, especially when it is greater than 1/(1 + L) (capacity of the
DS-Bus), the dependence between two successive bus cycles can not be ignored. In other words,
the basic model will produce large errors in case of relatively large r.

3.2. Relaxed models

If assumption 2 is relaxed, the request rate 7 in equation (2) should be modified because some
requests were deferred from earlier bus cycles. Now r(i) is employed to denote the instant request
rate, defined as the ratio of the number of requests to the number of PE’s at the ith bus cycle.
The changes in r({) over time are: :

At first cycle, r(0)=r;

1

o

Py
3

0.

(]

|
;

Fig. 8. Simulation with different number of processing clements (N) and comparison with equation (2).
(a) N=3S5, (b) N =10, (c) N =20 and (d) equation (2).

148

at second cycle,

Xu BAIQIANG and NATHAN IDA

r(1) = M(((1 - Pr(0))-r-N +r-N)/N)
= M(r +r(0)-(1 - Pr(0))

at (k + Dth cycle,
r(k) =M +r(k —1)-(1 — Pr(k — 1)));

where

Request Rate

Accept Rate

, fx for 0€x<1
M(x)=+<
[l for x31

(a)

0.17

0.16

0.15

0.14+

0.13

T

0.1
0

i

2 4 6 8 10 12 14 16 18
Time (in bus cycles)

(b)

20

0.72

0.7

0.68

0.66

0.64

0.62

0.6
0

2 = 6 8 10 12 14 16 18
Time (in bus cycles)

Fig. 9. (a,b) Caption on facing page.

3

A dynamically segmented bus architecture 149

and Pr(i) is the corresponding accept rate for r(i). For the modified r, the basic model is still valid,
ie.

1
1+ L-rk)
Equations (3) and (4) describe the dynamic behavior of the DS-Bus recursively. Figure 9 shows

how r(k) and Pr(k) change for r =0.1 and r =0.2. Figure 9(b) clearly shows that r(k) goes up
to 1.0 and Pr(k) drops to 0.2 when r = 0.2 [equals exactly 1/(1 + L)].

Pr(k)=)]

(c)

Request Rate

0 10 20 30 40 50 60 70 80 90 100

Time (in bus cycles)

(d)
0.6 : . : { . . -

0.55r -

0.5

0.45

0.4

Accept Rate

0.35

0.3

0.2 1 . 1 L i 1
0 10 20 30 40 50 60 70 80 90 100

Time (in bus cycles)

Fig. 9 (c and d).

Fig. 9. Request and accept rate versus time. (a) Request rate increases with time (r = 0.1), (b) accept rate
decreases with time (r = 0.1), (¢) request rate increases with time (r = 0.2) and (d) accept rate decreases
with time (r =0.2).

150 Xu BAIQIANG and NATHAN IDA
In the static state, each Pr(i) in equation (3) should be the same for the finite terms with lower
order. Ps is used for Pr(i), Rs for r(i). Thus
Rs =[r(k); k—o0]
=Mr-(1+(0=Ps)+(1—PsP+(1—Ps)l+--7)

¢ A
-m(~_q _psj) = MC1PD) ©®
and
P = TG
L
1-L-r for r<Ps;
Ps = 1 (6)

for r>Ps

1+L

The curve of Ps is shown in Fig. 10, this is quite different from that of equation (2) shown in
Fig. 8 (redrawn in Fig.10 for comparison). Ps drops much faster than Pr while Pr degrades
smoothly as r increases. The largest error occurs at r = 0.2. However, both tend to 0.2 (minimum
value of the accept rate for L =4).

3.3.Model discussion

Ps is the static value of the accept rate and is also equal to 0.2 for a requested bus section of
S and the request rate r is equal to 0.2. Since the dynamic request rate r(i) is approaching 1 (Fig. 9),
the accept rate must be 0.2 although requests experience long delays. This example clearly illustrates
that accept rate alone is not sufficient to describe the DS-Bus.

The region to the left of C is called W, and the region to the right of C is called S (see Fig. 10).
Since the DS-Bus usually works in the region W, it is convenient to use the mean request interval
instead of the request rate. For instance, the relationship between the request interval and the
accept rate in the static state can be derived from equation (6)

{I—L/c, for c21+L;
Ps =

1/Q+L), for c<1+L. @

SR T

g 0.6F

Request Rate
Fig. 10. A relaxed model. (a) From equation (2) and (b) the relaxed model from equation (6).

A dynamically segmented bus architecture 151

where ¢ is used to denote the request interval. Figure 11 shows the accept rate against the request
interval of equation (7). Simulation results are also plotted in the same figure. The experiments were
done for both uniform and Poisson distributions of the request interval. One conclusion drawn
from Fig. 11, is that equations (6) and (7) are quite accurate estimates of the accept rate. In some
cases (usually when requests have large variance), it overestimates the accept rate. In other cases
(usually when requests have small variance), it underestimates. The error in Fig. 11 is tolerable.
Models described by equations (4), (6), and (7) can be used in most cases without undue risk.

Special attention should be paid to point C in Fig. 10. The value at C is the capacity of the
DS-Bus (denoted by CDSB). Physically, the capacity of the DS-Bus is the maximum request rate
at which no bus saturation occurs. With Ps =r, the following formula can be derived from
equation (6)

CDSB = —. ®

When the request rate r goes beyond CDSB, the accept rate remains the same. This is an
indication of bus saturation caused by mismatch between the accept and request rates. In this state,
buffers between the DS-Bus and the PE’s accumulate the requests from the processing element. The
buffers may be filled up if requests in the buffer are not accepted by the DS-Bus at a sufficiently
high rate. Eventually the PE’s slow down because of long delay of messages needed during
computation, and the system performance is degraded. Ideally, an application should not drive the
DS-Bus into the region beyond, or too close to the capacity of the DS-Bus.

3.4. Delay and bandwidth

Delay, or waiting time, is the mean time difference between the instance at which a communi-
cation request is submitted and the instance at which the request is accepted. Obviously, the delay
should be as small as possible.

A closer look at a buffer between the DS-Bus and a PE is in order. Each buffer is very much
like a service queue model (see Fig. 12). Assuming that the request is Poisson-distributed, the service
time distribution is unknown at this point but can be safely assumed to be exponentially distributed.
An exponential distribution has large variance, therefore, this assumption is justified. Thus, the
buffer behaves like an M /M /1 queue. For an M /M /1 queue with customer arrival rate y and service

0.9

0.8

Accept Rate

0.4f

0.3F

0.2
0

Fig. 11. Comparison of simulation with equation (7). (a) Uniform distribution, (b) poisson distribution
and (c) equation (7).

152 Xu BAxQuanG and NATHAX IDA

Buffer

Request r | Accept prs

Fig. 12. A buffer considered as an M/M/]1 queue.

rate u the average number of customers E(q) in the queue is
2

4
E@)=——. ®
Py
Thus, a buffer has mean requests waiting for acceptance
2
Eb)y=_ — .
®) Ps-(Ps—r)
Using Little’s formula, L =y - W, the delay can be written as
r
d=EMb)/r= .
O)ir Ps-(Ps —r)
Substituting r with ¢, and Ps with equation (7), equation (11) becomes
d=—— , -
(c—L)c-L-1) ’ A

This is illustrated in Fig. 13 for L =4, 5, 6 and 7.
As an example, consider PE’s to be implemented with 8086-8087 pairs. When the PE’s are
executing the following loop
DOI=1to N
ADD AX, [BX + DIJ; operation
OUT [DX], AX; output to buffer
.END DO

they can generate the highest reasonable output rate. If DX points to communication buffers, they
generate a shortest communication interval of (8 +9)+8=25 clock cycles. This interval

10,

er |

Delay (in bus cycle)
=1

‘ \ \ \
I », N , \
: .
1 \ = \\'“ \x“‘-a.____ .
ol ——,———— _—_.:....—_—_— —
6 7 8 9 10 1 12 13 14
Request Interval (in bus cycle)

Fig. 13. Deiay (d) vs request interval (c). (a) L =4, (b)) L =5, () L=6and (d) L= 7.

A dynamically segmented bus architecture

corresponds to 6.25 bus cycles for DS-Buses with four clock cycles per bus cycle. The delay inserted
by a DS-Bus is about 2 bus cycles (see Fig. 13). At this point, the system speed-up at maximum
request rate can be determined as

SU,=N-25/(25+8+4)=0.67'N.

This SU, is for integer computation. If an application deals with floating point numerical
computation, the shortest request interval corresponding to the above loop would be much longer.
The ADD instruction takes about 84 clock cycles. If load and store time is neglected, the request
interval is 21 bus cycles. The bus delay (from Fig. 13) is less than 0.5 bus cycle. The speed-up in
this case is

SU;=N-21/21 +0.5+2)=09'N

This is a very promising result.
Bandwidth (BW) is defined as the average number of requests accepted in each bus cycle, i.e.
it is a measure of the concurrent degree of the bus. BW can be derived from equation (7) as follows

BW =Rs-N-Ps=N-M(r/Ps)-Ps
ie.
BW =N/c for c>21+4L. , (13)

For L =4, c =6 and N = 32, BW equals 5.3. Equation (13) is relevant when trying to compare
the DS-Bus scheme with other schemes during evaluation. One contradiction should be noticed.
In order to make maximum use of the DS-Bus, ¢ in equation (13) should be decreased. However,
this is contrary to the demand of equation (12) which says that, the larger c, the smaller d. Biasing
towards equation (12) is necessary during system design, tuning and application.

4. EVALUATION OF THE DS-BUS ARCHITECTURE

The DS-Bus and multiple bus networks evolved from bus structures. On the other hand, a
DS-Bus works as interprocessor networks similar to a hyper-cube. Therefore, multiple bus and
hyper-cube networks will be used for comparison to evaluate a DS-Bus network.

From a hardware point of view, there are five commonly used parameters: Complexity,
Modularity, Expandability, Fault Tolerance and Reconfiguration. Complexity is a measure of cost;
Modularity the ability to construct the system by repetition; Expandability the easiness to expand
the system; Fault tolerance a measure of the performance in case a fault occurs; Reconfiguration
the flexibility of the system to adapt to changes of demand. The attributes of the three types of
networks to these parameters are listed in Table 1. The DS-Bus is favorable on all aspects except
fault tolerance due to the central control logic and the segmented bus.

Performance is the most important parameter for evaluation of a network. The performance of
a network usually is application dependent. For proper evaluation a particular type of work-load
must be chosen. '

Consider first the summation of N numbers 4(0... N — 1). Assume there are N PE’s and that
A(i) is already stored in the local memory of the ith PE, and N = 2" for some n. The summing
can be done by sending 4 (2k — 1) to the 2kth PE and summing 4 (2k — 1) and A4 (2k) in the 2kth
PE, for k = 1,..., N/2 in the first cycle. At the ith cycle, the 2~! (2k — 1)th PE sends the partial
sum to the 24th PE, where it forms a new partial sum (for k =1,..., N/2'). Finally, the
summation is formed by the Nth PE in the (log,N)th cycle. During the process, there are no
conflicting requests submitted. Thus, there is no waiting involved during summation.

Table 1. Comparison of hardware for various nctworks
T Multiple bus Hyper-cube DS-Bus

Complexity
Modularity
Expandability
Fault tolerance
Reconfiguration

154 Xu BAIQIANG and NATHAN IDA

As a second example, consider the solution of a system of linear equations. The system is of the
form [A] x [X] = [B], where [A] is an N x N banded matrix, with a bandwidth of L + 1, and [B]
and [X] are vectors. There are two methods to solve this problem: direct and iterative methods.
Iterative methods seem to be more efficient, in particular, for large sparse matrices and on MIMD
computers [3,4). Thus, the classical Jacobi method is considered here by mapping the ith equation
to the ith processor. Under these conditions, most processors carry out the computation in the
following form

i+l

x(i)= a(i, k) x(k),
kai-1|
where [is the half bandwidth of the system (i.c. L = 21). In this case, the request interval will be
approximately 96 x 5 < 4 = 120 bus cycles. The delay at this request interval is negligible compared
to the computation time (see Fig. 13).

However, if an FFT program is going to be partitioned and executed on a DS-Bus machine, the
system would not perform so well.

In the following, a DS-Bus will be compared with multiple bus and hyper-cube in terms of
bandwidth and delay by characterizing workloads with request rate of PE’s.

Assume that the number of processors N is 64 for all three cases. The number of memory banks
M is 32, the number of buses B is either 7 or 8 for the multiple bus case. The hyper-cube is a direct
binary network. Also, the reference pattern is assumed to be harmonic so that it is relevant to the
characteristics of the DS-Bus. Harmonic locality defines a reference pattern such that a PE
generates a message of hopcount i with a probability inversely proportional to i. Figures 14 and
15 show the bandwidth and delay [5,6).

Although the hyper-cube is capable of supporting any value of request rate, the penalty is long
message delays and a costly system. On the other hand, the multiple buses yicld much shorter delays
if they are not saturated. The maximum request rate is 0.11 for B =7 and 0.13 for B =8. The
figures show that the DS-Bus has a bandwidth between B =7 and B =8 of the multiple buses,
and that the delay is between that of the multiple buses and that of the hyper-cube when the request
rate is below 0.095. Most of the time, it is close to the multiple buses. Recall that 0.16 is the highest
request rate for integer operation, and 0.04 the highest request rate for real operation. If two
operations are equally likely to happen, the highest rate would be 0.1. Thus, by a specially
structured “bus”, the DS-Bus is a good compromise between cost and performance.

14

|
2t &

—

0 - ‘ . ;
0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

Request Rate

Fig. 14. Comparison of Bandwidth on various networks. (a) Hyper cube, (b) multiple bus (8 = 8), (¢)
DS-Bus and (d) multiple bus (B = 7).

A dynamically segmented bus architecture 155

4.5 ——— ; —

&
T
N TN

35} |

> ;‘
2 | 4
a 25p O @ 8 4
3 o
L r /
1.5} / |
| / “ b
| / |
05 e c
) — 7/;,5_;;/'
ok = . ,v
0 0.02 0.04 0.06 0.08 0.1 0.12 0.14
Request Rate

Fig. 15. Comparison of message delay on various networks. (a) Hyper-cube, (b) multiple bus (B = 8),
(c) multiple bus (B = 7) and (d) DS-Bus.

5. AN EXAMPLE OF THE DS-BUS ARCHITECTURE

Figure 16 is an example of a DS-Bus architecture. It illustrates a network implemented with 66
individual DS-Buses. Each DS-Bus is connected with others through two DS-Buses. If one DS-Bus
can support 64 processors, then a total of 3904 processing elements (excluding the three
communication processors (CP) per DS-Bus) can be accommodated in this system. All communi-
cation processors are connected to the front-end processor by a common bus.

Previous analyses indicate that PE's should be implemented with microprocessors of moderate
performance with respect to the bus speed. Otherwise, mismatching between computing power and
communication resource causes poor utilization of system hardware and results in low speed up.
Thus, standard microprocessors (with numerical co-processor) would be a good choice to
implement PE’s in the system.

Implementing the interconnection network by a set of DS-Buses, instead of one DS-Bus has two
advantages: recall that the resolution time is linearly proportional to the number of grants (Section
2.2). This implies that the shorter a DS-Bus, the shorter the resolution time. Consequently, the design
given in Section 2.2 can be implemented in practice. Secondly, the requested bus section by read and
write will be effectively cut down. The longest requested bus section in such a system is 80 bus seg-
ments. For a single DS-Bus system with same number of PE’s the longest requested bus section is 2k.

The connection between DS-Buses is accomplished by two additional DS-Buses (called global
DS-Bus), as well as the common PE’s on neighboring DS-Buses which should greatly improve the
communication of the neighboring DS-Buses. CP’s on each DS-Bus are located uniformly around
DS-Buses, 32 bus segments apart from each other, and such that two are on neighboring DS-Buses,
the other two on global DS-Buses.

The front-end processor is mainly for interfacing between the system and the outside world,
and/or for partitioning and assigning jobs. It connects with all CP’s through a common bus, and,
therefore, may access the rest of the system via the CP’s. Notice the configuration flexibility of the
DS-Bus architecture. This can be illustrated in two aspects. From a hardware point of view, the
PE modules can be replaced with other modules, such as memory or I/O modules, that is, the
system can be easily reconfigured. On the other hand, the front-end processor can treat PE’s in
the system like a pool of resources. PE’s can be individually used for small scale computation, can
be used set by set for larger scale computation, or all PE’s can be assigned to a very large scale
engineering problem. Furthermore, each PE is capable of sharing workloads, such as housekeeping,
management, scheduling, and even I/O operations, with the front-end processor. Therefore, the

156 Xu BAIQIANG and NATHAN IDA

Y S S b
rHL e r
‘L‘l'i }CPJ lCP‘ iCP
T

-

Ry P

|
‘ central ‘ Inter—leaved

Processor Main Memory
(b)

Fig. 16. An example of DS-Bus architecture. (2) Interconnection network and (b) the front-end processor
and CP’s.

front-end processor does not necessarily have to be a fast computer, and may be omitted from the
system by replacing it with any PE.

6. CONCLUSIONS

A number of aspects of the DS-Bus architecture have been studied in some detail. The study
leads to the following conclusions:

(1) The DS-Bus offers another approach for interconnection networks in parallel computer
systems. The architecture provides a shared message path to combine short delay in a
multiprocessor system with low communication demand in a distributed system.

(2) The DS-Bus gains capacity by using the bus efficiently. Since the accept rate and delay
are degraded quite rapidly as the requested bus section increases, the way to make use
of the potential of the DS-Bus is to limit communication between processing elements
which are far from each other. This implies that the performance of the DS-Bus can be
application sensitive.

(3) The arbiter is the most sophisticated module in the DS-Bus architecture. The resolution
time of the current design is linearly proportional to the number of grants. In order to
broaden the application and accommodate more processing elements on one DS-Bus, the
design needs further improvements.

(4) Flexibility is another advantage of the DS-Bus architecture. This, seems, can be explored
to overcome the bound on both computation and 1/0.

A dynamically segmented bus architecture

REFERENCES

1. J. Archibald and J. L. Baer, Cache coherence protocols: evaluation using a multiprocessor simulation model. ACM

Trans Computer Syst. pp. 273-298, Nov. (1986).

G. Pfister er al., The IBM research parallel prototype (RP3): introduction and architecture, Proc. 1985 Int. Conf. on

Parallel Processing (1985).

. R. J. Melosh and Senol Utku, Direct finite clement equation solving algorithms. Computers Struct. 28, 99-105 (1985).

. O. Axelsson, A class of iterative methods for finite element equations. Computer Meth. Appl. Mech. Engng, pp. 123-137,

No. 9 (1976).

5. T. N. Mudge, J. P. Hayes et al., Analysis of multiple-bus interconnection networks. J. Parallel Distrib. Computing 3,
328-343 (1986).

6. S. Abraham and K. Padmanabhan, Performance of direct binary n-cube network for multiprocessors. /EEE Trans.
Comput. 38, 1000-1011 (1989).

7. A. Gottlieb er al., The NYU Ultracomputer—designing an MIMD sﬂnred-memory parallel computer. IEEE Trans.
Comput. C-32, 175-189 (1983).

8. T. Lang and M. Vaiero, M-users B-servers arbiter for multiple-buses multiprocessors. Microprocessing Microprogr. 10,
11-18 (1982).

9. H. F. Jordan and P. L. Sawyer, A Multi-processor system for finite element structural analysis. Computer Struct. 10,
21-29 (1979).

10. T. N. Mudge, J. P. Hayes and D. C. Winsor, Multiple bus architectures. Computer, pp. 4248, June (1987).

11. D. A. Reed and D. C. Grunwold, The performance of muiticomputer interconnection networks. Computer, pp. 6373,
June (1987).

12. K. Hwang and F. A. Briggs, Computer Architecture and Parallel Processing. McGraw-Hill, New York (1984).

13. M. Schwartz, Telecommunication Network: Protocols, Modeling and Analysis. Addison-Wesley, Reading, Mass. (1987).

14. P. J. Denning, The operational analysis of queueing network models. Computing Survey 10, No. 3 (1978).

15. J. M. Kurtzberg, On the memory conflict problem in multiprocessor system. JEEE Trans. Comput. C-23, No. 3 (1974).

16. Kwok-Tung Fung and H. C. Torng, On the analysis of memory conflicts and bus contentions in a multiple-micropro-
cessor system. JEEE Trans. Comput. C-27, No. 1 (1979).

17. H. S. Stone, High-Performance Computer Architecture. Addison-Wesley, Reading, Mass. (1987).

18. H. J. Sicgel, Interconnection Networks for Large Scale Parallel Processing: Theory and Case Studies. Lexington, Mass.
(1985).

19. G. A. Anderson and E. D. Jensen, Computer interconnection structures: taxonomy, characteristic, and examples. ACM
Comput. Surv. 7, No. 4 (1975).

aw

APPENDIX

It is possible to derive a formula for an accept rate in case of varying L if some approximations are allowed. To do this,
Fig. 6 is used again. Assuming that, at a particular bus cycle, the ith PE is requesting a bus section of length L(i) + | with
a probability of r. Then, in order to accept this request, possible requests, at a distance L(i)/2 or less from the PE on the
left side, should be deferred. This event has a probability of (1 — 7 - Pm)“42 provided that Pm is the mean accept rate and
allowing substitution of individual acceptance Pa with Pm. Furthermore, outside of the region above on the left side, from
right to left, the first possible request should be deferred; the second possible request may access the DS-Bus with section
length of 3 bus segments or should be deferred; . . . ; the kth possible request may access a section of length 2k — 1 or less,
or should be deferred, and so on. This event has a probability of

[N -r-Pmy+r-Pm-PJ (14)
k=0
where P, is the probability of the requested bus section being of length 2k + 1 or less. Keeping terms up to the order
r-Pm-P,, we expand equation (14) to get

BAX
l—r-PmY 1 —P,=1~r-Pm-Lm/2 19
k=0
where Lm is the mean value of L. When we recognize that 1 — P, is the probability of the section length being 2k + 3 or
greater, the right hand of (15) is quite obvious. Thus, the probability of accepting the request of PE(i) is

Pa(i)=(1 =r-PmY“V.(1 —p.Pm-Lm[2)

(1 —r-Pm-L(#)/2)(1 —r-Pm-Lmj2). (16)
Here, an approximation is made by neglecting high orders of 7 - Pm. From (16), the accept rate is derived as
N1t . N-1
Pr = Z Pa(i)/N =(1 —r-Pm-Lm/2)(N—r-Pm z L(i)/Z)/N. an
i=0 =8

Applying the central limit theorem to IL(i), the distribution of IL(i) is Gaussian with mean of N - Lm regardless of the
distribution of L provided the L’s are independent. In this case, the mean of Pr is

Pm = (1 —r-Pm-Lm/[2). (18)
When 7 - Pm is relatively small with respect to 1 (it usually is), equation (18) is reduced to
Pm=(1—r-Pm)~
ml—Lm-r-Pm. (19)

Comparing equation (1) with equation (19), L has been replaced by Lm and Pr by Pm. Consequently, the models
developed thereafter also apply to the case with varying L if these substitutions are made.

158 Xu BAIQIANG and NATHAN IDa

AUTHORS’ BIOGRAPHIES

Xu BaiQiang—Mr Xu BaiQiang is a Ph.D. candidate at the University of Akron. His main interests are digital circuits,
computer architecture, digital signal processing, numerical analysis, applied mathematics, and inverse problems. He received
his B.Sc.E.E. from Chengdu Institute of Telecommunication, P.R. China, and his M.Sc.E.E. from the University of Akron.

Nathan Ida—Dr Ida is associate professor of electrical engineering at The University of Akron. His current research interests
are in the areas of parallel and vector computation, numerical modeling of electromagnetic fields, electromagnetic wave
propagation and nondestructive testing of materials. Dr Ida received his B.Sc.E.E. and M.Sc.E.E. from the Ben Gurion
University in Israel and his Ph.D. from Colorado State University.

