Supramolecular Chemistry

One Ligand in Dual Roles: Self-Assembly of a Bis-RhomboidalShaped, Three-Dimensional Molecular Wheel

Xiaocun Lu, ${ }^{[a]}$ Xiaopeng Li ${ }^{[b]}$ Kai Guo, ${ }^{[a]}$ Jing Wang, ${ }^{[a]}$ Mingjun Huang, ${ }^{[a]}$ Jin-Liang Wang, ${ }^{[c]}$ Ting-Zheng Xie, ${ }^{[a]}$ Charles N. Moorefield, ${ }^{[a]}$ Stephen Z. D. Cheng, ${ }^{[a]}$ Chrys Wesdemiotis,** ${ }^{[a]}$ and George R. Newkome**a]

Abstract

A facile high yield, self-assembly process that leads to a terpyridine-based, three-dimensional, bis-rhom-boidal-shaped, molecular wheel is reported. The desired coordination-driven supramolecular wheel involves eight structurally distorted tristerpyridine (tpy) ligands possessing a 60° angle between the adjacent tpy units and twelve Zn^{2+} ions. The tpy ligand plays dual roles in the self-assembly process: two are staggered at 180° to create the internal hub, while six produce the external rim. The wheel can be readily generated by mixing the tpy ligand and Zn^{2+} in a stoichiometric ratio of 2:3; full characterization is provided by ESI-MS, NMR spectroscopy, and TEM imaging.

Supramolecular assemblies play key roles in natural processes, such as metabolism and gene expression; ${ }^{[1]}$ whereas, many three-dimensional abiological metallosupramolecular architectures, such as a cage or prism, ${ }^{[2]}$ have been widely reported ${ }^{[3]}$ and then utilized in nanotechnology, chemical sensing, molecular electronics, catalysis and biomedicine. ${ }^{[4]}$
Three-dimensional polyhedron structures can be constructed by either locating the metal ions at the vertices with the requisite organic ligands at the edges ${ }^{[22, c,-e, g, j, 5]}$ or employing multitopic organic ligands as the vertices with ligand-metal-ligand linkages delineating the edges. ${ }^{[2 b, k, 6]}$ Only few such 3D supramolecular assemblies ${ }^{[22, h, k, 7]}$ have been reported employing ter-

[^0]pyridine-based connectivity. Herein, a novel, two-component supramolecular bis-rhomboidal architecture is reported that is derived from single, highly distortable, hexasubstituted, aryl ligands.

A hexagonal-shaped, 3D-spoked wheel contains two structural components: the central hub and the outer rims. Hence, the original synthetic route ${ }^{[8]}$ involved a three-component system (Scheme 1): two tritopic ligands to form the central hub (two tris-terpyridine S3 in C1), six tritopic ligands forming the rims (six tris-terpyridine R3 in C1) and twelve metal ions as the linkage. Due to the highly deformed nature of R3, it was questioned if it could also be used as a substitute central core; thus, complex C2 involves eight R3 ligands and twelve ions in an 8:12 ratio, in which this single ligand serves dual roles. Six R3 ligands are used to construct the rim and two others serve as the internal hub. As a result, this C2 assembly can be envisioned as being derived from two, stable, independent rhomboidal moieties, ${ }^{[9]}$ as depicted in Scheme 1 with the green shadow.

Initially the trimethoxy-functionalized tris-terpyridine ligand R3 $a^{[10]}\left(X^{1}=X^{2}=O M e, ~ S c h e m e 1\right)$ was used. The Zn^{2+}-based wheel C2a was prepared by mixing a precise stoichiometric ratio (2:3) of ligand R 3 a and $\mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ in MeOH stirring at $75^{\circ} \mathrm{C}$ for 3 h . After cooling to $25^{\circ} \mathrm{C}$, an excess of $\mathrm{NH}_{4} \mathrm{PF}_{6}$ was added to give a light-yellow precipitate, which was thoroughly

Scheme 1. Pictorial assembly of the supramolecular 3D wheels C1 and C2.

Figure 1. Structure of the supramolecular 3D bis-rhomboidal-shaped wheel C2 with the illustration of different tpy units denoted by different color and letter assignments A to G [dotted square denotes the smallest subunit (rhomboid)].
washed with water. The desired wheel C2a (Figure 1) was isolated ($>91 \%$), as a light-yellow powder with $\mathrm{PF}_{6}{ }^{-}$, as the counterion, after drying in vacuo at $50^{\circ} \mathrm{C}$ without further purification.
The bis-rhomboidal-shaped C2a was characterized by NMR spectroscopy and ESI-MS coupled with traveling-wave ion mobility (TWIM) mass spectrometry (MS). ${ }^{[10,11]}$ With ESI-MS (Figure 2 A), a series of peaks with charge states from $6+$ to $15+$ was observed, derived by the loss of a different number of

Figure 2. A) ESI-MS of C2 a. B) 2D ESI-TWIM-MS plot (m / z vs. drift time) for C2 a with the charge states of the intact assemblies marked.
$\mathrm{PF}_{6}{ }^{-}$units. The precise molecular weight of 12985.7 Da was exhibited and is consistent with the formation of C2a. Isotope patterns of each charge state agreed well with the corresponding simulated isotope patterns. ESI-TWIM-MS (Figure 2B) further confirmed the structural assignment. Each charge state showed a narrow drift time distribution indicating that no other structural conformers or isomers were present.

Wheel C2a was also characterized by ${ }^{1} \mathrm{H}$ NMR spectroscopy (Figure 3), which showed a complex spectrum comprised of

Figure 3. H NMR spectra $\left(\mathrm{CD}_{3} \mathrm{CN}, 750 \mathrm{MHz}\right.$) of A$)$ wheel $\mathbf{C} 2 \mathbf{a}$ and B$)$ wheel $\mathbf{C 2 b}$ (an enlarged NMR (Figure S12) with full assignments is included in the Supporting Information); the upfield chemical shift of the protons from $\mathrm{OBn}^{\mathrm{E}}$ (a, b and c in yellow) was denoted as dotted black arrow. C) Representative energy-minimized structure of $\mathbf{C 2} \mathbf{b}$. D) Representative energy-minimized structure of staggered two tpy units located in the molecular hub of C2 b. E) Enlarged $3^{\prime}, 5^{\prime}$ and $3,3^{\prime \prime}$ regions of the NMR spectra (the blue dotted lines illustrates the upfield chemical shift of protons $3^{\prime}, 5^{\prime}$ and $3,3^{\prime \prime}$ in C2 b).
seven different tpy units with an expected integration ratio of 2:2:2:2:2:1:1; this was consistent with the assignment (Figure 1; each tpy unit is denoted with different color and assigned with letters from A to G). The aromatic region of the ${ }^{1}$ H NMR was complicated due to the overlapping peaks from the similar, yet different structural environments of the tpy moieties. Assignment of the peaks was based on the analysis of 2D COSY and 2D NOESY NMR spectra (Supporting Information). All of the $6,6^{\prime \prime}$ protons from the tpy units were significantly shifted upfield due to the electron-shielding effects, which is typical of the inherent pseudo-octahedral arrangement in the \langle tpy-Zn"-tpy \rangle connectivity. ${ }^{[12]}$ Complex C2 a exhibited two singlets and two multiplets between 3.5 and 4.5 ppm that were assigned to the OMe markers. The two singlets at 3.99 and 3.86 ppm with an integration ratio of $2: 1$ were assigned to $\mathrm{H}^{\mathrm{OMe-D}}$ and $\mathrm{H}^{\mathrm{OMe-E}}$ from the adjacent OMe groups, respectively. The multiplet centered at 4.17 ppm was attributed
to the overlapped peaks of $\mathrm{H}^{\text {OMe-G }}$ and $\mathrm{H}^{\mathrm{OMe-F}}$ and the multiplet centered at 3.89 ppm was assigned to the remaining OMe groups ($\mathrm{H}^{\mathrm{OMe-A}}, \mathrm{H}^{\mathrm{OMe-B}}$ and $\mathrm{H}^{\mathrm{OMe}-\mathrm{C}}$).

ESI-MS and NMR spectroscopy confirmed the bis-rhomboidal architecture C2 a with clear information about constitution and the manner of connectivity. To explore the complicated internally stacked hub region, the central methoxy moiety was replaced with an aryl group, so that the imposed neighboring ring current could be used to assign the adjacent protons and to afford structural insight to the inner core region. Thus, ligand $R 3 b_{b}{ }^{[8]}\left(X^{1}=\mathrm{OBn}, \mathrm{X}^{2}=\mathrm{OMe}\right.$, Scheme 1) possessing a benzyloxy group, was utilized to construct the related bis-rhom-boidal-shaped $\mathbf{C 2 b}$ (Figure 1), which was prepared by mixing R3b and $\mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ in a stoichiometric ratio (2:3) under identical conditions $\left(75^{\circ} \mathrm{C}\right.$ in MeOH$)$ as used above. After the counterion exchanged from $\mathrm{NO}_{3}{ }^{-}$to $\mathrm{PF}_{6}{ }^{-}$, the desired wheel C2 b was isolated with 90% yield.

The ESI mass spectrum of $\mathbf{C 2 b}$ (Figure 4 A) also showed a series of peaks with charge states from $6+$ to $15+$. The pre-

Figure 4. A) ESI-MS of C2 b. B) 2D ESI-TWIM-MS plot (m / z vs. drift time) for C2b. The charge states of intact assemblies are marked.
cise molecular weight of 13594.3 Da deduced by ESI-MS confirmed the desired structure. The narrow drift time distribution in the bands in the ESI-TWIM-MS plot (Figure 4B) further demonstrated that there were no other structural conformers or isomers present.

Complex C2b was further characterized by ${ }^{1} \mathrm{H}$ NMR spectroscopy (Figure 3) and the seven different tpy units with an identical integration ratio as for C2a were assigned with the aid of 2D COSY and NOESY obtained through high-resolution NMR spectroscopy (750 MHz , Figure 5). Complex C2b showed two singlets at 5.36 and 5.00 ppm with an integration of $3: 1$, which were assigned to the CH_{2} from benzyloxy groups ($\delta=$ $5.36 \mathrm{ppm}, \mathrm{CH}_{2}^{\mathrm{Bn}-\mathrm{G}}$ and $\left.\mathrm{CH}_{2}^{\mathrm{Bn}-\mathrm{F}} ; \delta=5.00 \mathrm{ppm}, \mathrm{CH}_{2}{ }^{\mathrm{Bn}-\mathrm{E}}\right)$. The remaining OMe markers exhibited as one singlet and one multip-

Figure 5. A) 2D NOESY NMR spectra ($750 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) and D) and E) two enlarged regions of complex C2b. B) Typical NOESY pattern of \langle tpy-Zn"-tpy \rangle. C) 2D DOSY NMR spectrum of wheel $\mathbf{C 2} \mathbf{a}$ in $\mathrm{CD}_{3} \mathrm{CN}$.
let, which were assigned to $\mathrm{H}^{\mathrm{OMe-D}}$ and the overlapped peaks of $\mathrm{H}^{\text {OMe-A }}, \mathrm{H}^{\text {OMe-B }}$, and $\mathrm{H}^{\text {OMe-C }}$, respectively. The protons $\mathrm{Ph}-\mathrm{H}^{\mathrm{k}}$ from the adjacent tpy units show space correlation in 2D NOESY spectra (Figure 5) due to the hindered steric condition, for example, correlation between $\mathrm{Ph}^{\mathrm{F}}-\mathrm{H}^{\mathrm{k}}$ and $\mathrm{Ph}^{\mathrm{A}}-\mathrm{H}^{\mathrm{k}}, \mathrm{Ph}^{\mathrm{B}}-\mathrm{H}^{\mathrm{k}}$ and $\mathrm{Ph}^{G}-\mathrm{H}^{\mathrm{k}}$ as well as $\mathrm{Ph}^{\mathrm{G}}-\mathrm{H}^{\mathrm{k}}$ and $\mathrm{Ph}^{\mathrm{C}}-\mathrm{H}^{\mathrm{k}}$.
The molecular dynamics simulation showed that the benzyloxy group $\mathrm{OBn}^{\mathrm{E}}$ from one hub of the molecular wheel $\mathbf{C 2 b}$ was located very close to the tpy ${ }^{\text {E }}$ of the other molecular hub (Figure 3D), causing tpy ${ }^{\mathrm{E}}-\mathrm{H}^{3,3^{\prime \prime}}$ and tpy $-\mathrm{H}^{3^{3}, 5^{\prime}}$ to be shifted upfield compared to C2a [$\Delta \delta:-0.35 \mathrm{ppm}$ for tpy ${ }^{\mathrm{E}}-\mathrm{H}^{3,3^{\prime \prime}}$ (Figure 3 E , blue triangle sign) and -0.28 ppm for tpy $\mathrm{E}^{\mathrm{E}}-\mathrm{H}^{3,5^{\prime}}$ (Figure 3 E , blue star sign)]. Meanwhile, tpy ${ }^{\mathrm{E}}$ also impacted this $\mathrm{OBn}^{\mathrm{E}}$ through its highly electron-shielding environment (Figure 3 E), causing the chemical shift of its protons to move dramatically upfield compared to the other rim-based benzyloxy groups [Figure $3 \mathrm{~B}, \Delta \delta:-0.51 \mathrm{ppm}$ for $\mathrm{OBn}^{\mathrm{E}}-\mathrm{H}^{\mathrm{a}}$ (label a in yellow), -0.56 ppm for $\mathrm{OBn}^{\mathrm{E}}-\mathrm{H}^{\mathrm{b}}$ (label b in yellow), and -0.92 ppm for $\mathrm{OBn}^{\mathrm{E}}-\mathrm{H}^{\mathrm{c}}$ (label c in yellow)].
The DOSY NMR spectrum of complex C2a revealed that only one species was present in solution with a diffusion coefficient of $2.5 \times 10^{-10} \mathrm{~m}^{2} \mathrm{~s}^{-1}$ (Figure 5C). Transmission electron microscopy (TEM) images were also acquired (Figure 6) by cast-

Figure 6. Left: Computer-generated, energy-minimized structure of C2a. Right: TEM images of C2a on carbon-coated Cu grid.
ing a dilute (ca. $10^{-6} \mathrm{~m}$) solution of $\mathbf{C 2} \mathbf{a} / \mathbf{b}$ in $\mathrm{CH}_{3} \mathrm{CN}$ on carboncoated Cu grids (400 mesh). The average diameters for both structures are (5.0 ± 0.3) nm, which is totally consistent with the optimized molecular model.
The collision cross sections (CCSs) ${ }^{[11 e, 13]}$ of the complex ions in different charge states were also derived from the corresponding drift times in the TWIM-MS plots. The CCSs varied only slightly with charge state (Table 1) for both C2a

Table 1. Experimental and theoretical collision cross sections (CCSs) of supramolecular wheel C2 a/b.

Charge state	Drift time [ms]	Collision cross-sections [\AA^{2}]		
		ExptI	Exptl av	Calcd av
wheel C2a				
6+	5.23	1519.1	(1549.7 $\pm 29.0)$	$(1334.5 \pm 32.3)\left(\mathrm{PA}^{[\mathrm{l}]}\right)$
$7+$	3.79	1579.8		$(1350.6 \pm 30.7)\left(\mathrm{PA}^{[b]}\right)$
$8+$	2.71	1568.2		(1692.8 $\pm 37.1)$ (EHSS)
9+	2.08	1531.5		(1648.8 $\pm 41.0)$ (TJ)
wheel C2b				
6+	5.96	1586.3	(1647.2 ± 43.1)	$(1515.0 \pm 36.4)\left(\mathrm{PA}^{[d]}\right)$
7+	4.24	1647.1		$(1448.6 \pm 34.6)\left(\mathrm{PA}^{[b]}\right)$
$8+$	3.16	1679.1		(1812.0 $\pm 41.0)$ (EHSS)
9+	2.44	1676.2		(1762.4 $\pm 47.6)$ (TJ)

[a] PA value obtained using DriftScope 2.1. [b] PA value obtained using MOBCAL.
($\left.(1549.7 \pm 29.0) \AA^{2}\right)$ and $\mathbf{C 2 b} \quad\left((1647.2 \pm 43.1) \AA^{2}\right)$, consistent with their structural rigidity. Theoretical CCSs were also calculated based on 300 candidate structures (from molecular dynamics simulations) of each complex, using the projection approximation (PA), trajectory (TJ), and exact hard sphere scattering (EHSS) methods. ${ }^{[14]}$ The TJ model provides a more realistic CCS prediction, as it considers both long-range interactions and momentum transfer between the ions and the gas in the ion mobility region. ${ }^{[14]}$ Given the size of the supramolecular wheels $\mathbf{C 2} \mathbf{a}$ and $\mathbf{C 2 b}$, the agreement between measured and predicted (TJ model) CCSs is satisfactory (better than 10%). The CCSs simulated by the TJ model and the corresponding experimental CCSs differ by 6.0% for C2a and 6.5% for C2b, indicating consistent trends between the experimental and theoretical CCS values for both bis-rhomboidal-shaped wheels C2 a/b.
Gradient tandem MS (gMS ${ }^{2}$) experiments ${ }^{[15]}$ were also performed on both assemblies C2a and C2b with charge state of $11+$ to examine the complex's stability (Supporting Information). The maximum center-of-mass collision energies, at which intact complexes were still observed for C2a and C2b were 1.27 and 1.28 eV , respectively, suggesting very similar binding energetics.
To summarize, two 3D supramolecular bis-rhomboidalshaped wheel architectures C2a and C2b were assembled in near quantitative yield capitalizing on the inherent molecular distortion associated with the hexasubstituted starting core ligands (two 180°-staggered tris-terpyridine). Both wheels were fully characterized by NMR spectroscopy, ESI-MS, and TEM imaging and the calculated CCSs (collision cross sections)
agreed well with the theoretically simulated values. The central two R3 ligands in C2 exhibit $C_{2 h}$ symmetry compared to the two staggered tritopic ligands S3 $\left(S_{6}\right)$ in C1 due to the geometric constraints. This localized distortion affects the symmetry of the overall complex; thus, $\mathbf{C} 2$ shows reduced symmetry $\left(C_{2 h}\right)$ compared to the highly-symmetric C1 $\left(S_{6}\right)$. This type of self-assembly utilizing such highly distorted ligands offers an interesting high yield avenue to novel 3D nanoconstructs; further investigation is ongoing.

Acknowledgements

The authors gratefully acknowledge support from the National Science Foundation (CHE-1151991, G.R.N; CHE-1308307, C.W.) and the Ohio Board of Regents. X.L. acknowledges support from the Research Enhancement Program of Texas State University.

Keywords: NMR spectroscopy • self-assembly • supramolecular chemistry - terpyridine - travelling-wave ion mobility
[1] a) P. J. Cragg, Supramolecular Chemistry: From Biological Inspiration to Biomedical Applications, Springer, Heidelberg, 2010; b) D. A. Uhlenheuer, K. Petkau, L. Brunsveld, Chem. Soc. Rev. 2010, 39, 2817-2826; c) X. Hou, L. Pedi, M. M. Diver, S. B. Long, Science 2012, 338, 1308-1313; d) C. Bieniossek, B. Niederhauser, U. M. Baumann, Proc. Natl. Acad. Sci. USA 2009, 106, 21579-21584; e) E. J. Enemark, L. Joshua-Tor, Nature 2006, 442, 270-275; f) F. Whelan, J. A. Stead, A. V. Shkumatov, D. I. Svergun, C. M. Sanders, A. A. Antson, Nucleic Acids Res. 2012, 40, 2271-2283; g) S. Park, J. Roelofs, W. Kim, J. Robert, M. Schmidt, S. P. Gygi, D. Finley, Nature 2009, 459, 866-870; h) M. Rappas, J. Schumacher, F. Beuron, H. Niwa, P. Bordes, S. Wigneshweraraj, C. A. Keetch, C. V. Robinson, M. Buck, X. Zhang, Science 2005, 307, 1972-1975.
[2] a) A. Westcott, J. Fisher, L. P. Harding, P. Rizkallah, M. J. Hardie, J. Am. Chem. Soc. 2008, 130, 2950-2951; b) T. Schröder, R. Brodbeck, M. C. Letzel, A. Mix, B. Schnatwinkel, M. Tonigold, D. Volkmer, J. Mattay, Tetrahedron Lett. 2008, 49, 5939-5942; c) S. Sato, J. lida, K. Suzuki, M. Kawano, T. Ozeki, M. Fujita, Science 2006, 313, 1273-1276; d) Q.-F. Sun, J. Iwasa, D. Ogawa, Y. Ishido, S. Sato, T. Ozeki, Y. Sei, K. Yamaguchi, M. Fujita, Science 2010, 328, 1144-1147; e) N. Takeda, K. Umemoto, K. Yamaguchi, M. Fujita, Nature 1999, 398, 794-796; f) Y. Inokuma, T. Arai, M. Fujita, Nat. Chem. 2010, 2, 780-783; g) R. Custelcean, P. V. Bonnesen, N. C. Duncan, X. Zhang, L. A. Watson, G. Van Berkel, W. B. Parson, B. P. Hay, J. Am. Chem. Soc. 2012, 134, 8525-8534; h) M. Schmittel, B. He, Chem. Commun. 2008, 4723-4725; i) J. Fan, S. M. Lal, B. Song, H. Schoenherr, M. Schmittel, J. Am. Chem. Soc. 2012, 134, 150-153; j) J. Xu, K. N. Raymond, Angew. Chem. 2006, 118, 6630-6635; Angew. Chem. Int. Ed. 2006, 45, 6480-6485; k) C. Wang, X.-Q. Hao, M. Wang, C. Guo, B. Xu, E. N. Tan, Y.-Y. Zhang, Y. Yu, Z.-Y. Li, H.-B. Yang, M.-P. Song, X. Li, Chem. Sci. 2014, 5, 1221-1226.
[3] a) T. R. Cook, Y.-R. Zheng, P. J. Stang, Chem. Rev. 2013, 113, 734-777; b) T. R. Cook, V. Vajpayee, M. H. Lee, P. J. Stang, K.-W. Chi, Acc. Chem. Res. 2013, 46, 2464-2474; c) N. B. Debata, D. Tripathy, D. K. Chand, Coord. Chem. Rev. 2012, 256, 1831-1945; d) C.-A. Palma, M. Cecchini, P. Samori, Chem. Soc. Rev. 2012, 41, 3713-3730; e) R. Chakrabarty, P. S. Mukherjee, P. J. Stang, Chem. Rev. 2011, 111, 6810-6918; f) B. J. Holliday, C. A. Mirkin, Angew. Chem. 2001, 113, 2076-2097; Angew. Chem. Int. Ed. 2001, 40, 2022-2043; g) G. F. Swiegers, T. J. Malefetse, Chem. Rev. 2000, 100, 3483-3538; h) A. Winter, M. D. Hager, G. R. Newkome, U. S. Schubert, Adv. Mater. 2011, 23, 5728-5748; i) A. Winter, S. Hoeppener, G. R. Newkome, U. S. Schubert, Adv. Mater. 2011, 23, 3484-3498.
[4] a) P. Ballester, A. Vidal-Ferran, P. W. N. M. van Leeuwen, in Advances in Catalysis, Vol. 54 (Eds.: C. G. Bruce, K. Helmut), Elsevier, Amsterdam, 2011, pp. 63-126; b) A. Winter, G. R. Newkome, U. S. Schubert, ChemCatChem 2011, 3, 1384-1406; c) A. Kumar, S.-S. Sun, A. J. Lees, Coord.

Chem. Rev. 2008, 252, 922-939; d) E. Moulin, J.-J. Cid, N. Giuseppone, Adv. Mater. 2013, 25, 477-487; e) J. W. Steed, P. A. Gale, Supramolecular Chemistry: From Molecules to Nanomaterials, Wiley, Hoboken, 2012; f) H.-J. Schneider, Applications of Supramolecular Chemistry, CRC, Boca Raton, 2012.
[5] C. Ducani, A. Leczkowska, N. J. Hodges, M. J. Hannon, Angew. Chem. 2010, 122, 9126-9129; Angew. Chem. Int. Ed. 2010, 49, 8942-8945.
[6] a) Y.-R. Zheng, H.-B. Yang, K. Ghosh, L. Zhao, P. J. Stang, Chem. Eur. J. 2009, 15, 7203-7214; b) A. M. Johnson, R. J. Hooley, Inorg. Chem. 2011, 50, 4671-4673.
[7] a) M. Schmittel, B. He, P. Mal, Org. Lett. 2008, 10, 2513-2516; b) S. Car-dona-Serra, E. Coronado, P. Gavina, J. Ponce, S. Tatay, Chem. Commun. 2011, 47, 8235-8237.
[8] X. Lu, X. Li, Y. Cao, A. Schultz, J.-L. Wang, C. N. Moorefield, C. Wesdemiotis, S. Z. D. Cheng, G. R. Newkome, Angew. Chem. 2013, 125, 7882 7885; Angew. Chem. Int. Ed. 2013, 52, 7728-7731.
[9] X. Lu, X. Li, J.-L. Wang, C. N. Moorefield, C. Wesdemiotis, G. R. Newkome, Chem. Commun. 2012, 48, 9873-9875.
[10] J.-L. Wang, X. Li, X. Lu, I. F. Hsieh, Y. Cao, C. N. Moorefield, C. Wesdemiotis, S. Z. D. Cheng, G. R. Newkome, J. Am. Chem. Soc. 2011, 133, 11450 11453.
[11] a) Y.-T. Chan, X. Li, M. Soler, J.-L. Wang, C. Wesdemiotis, G. R. Newkome, J. Am. Chem. Soc. 2009, 131, 16395-16397; b) A. Schultz, X. Li, B. Barkakaty, C. N. Moorefield, C. Wesdemiotis, G. R. Newkome, J. Am. Chem. Soc. 2012, 134, 7672-7675; c) Y.-T. Chan, X. Li, J. Yu, G. A. Carri, C. N. Moorefield, G. R. Newkome, C. Wesdemiotis, J. Am. Chem. Soc. 2011, 133, 11967-11976; d) O. Chepelin, J. Ujma, P. E. Barran, P. J. Lusby, Angew. Chem. 2012, 124, 4270-4273; Angew. Chem. Int. Ed. 2012, 51, $4194-$

4197; e) J. Thiel, D. Yang, M. H. Rosnes, X. Liu, C. Yvon, S. E. Kelly, Y.-F. Song, D.-L. Long, L. Cronin, Angew. Chem. 2011, 123, 9033-9037; Angew. Chem. Int. Ed. 2011, 50, 8871-8875; f) C. A. Scarff, J. R. Snelling, M. M. Knust, C. L. Wilkins, J. H. Scrivens, J. Am. Chem. Soc. 2012, 134, 9193-9198; g) C. A. Schalley, T. Muller, P. Linnartz, M. Witt, M. Schafer, A. Lutzen, Chem. Eur. J. 2002, 8, 3538-3551; h) W. Jiang, A. Schaefer, P. C. Mohr, C. A. Schalley, J. Am. Chem. Soc. 2010, 132, 2309-2320.
[12] a) N. M. Logacheva, V. E. Baulin, A. Y. Tsivadze, E. N. Pyatova, I. S. Ivanova, Y. A. Velikodny, V. V. Chernyshev, Dalton Trans. 2009, 2482-2489; b) H. Hofmeier, P. R. Andres, R. Hoogenboom, E. Herdtweck, U. S. Schubert, Aust. J. Chem. 2004, 57, 419-426.
[13] a) F. Lanucara, S. W. Holman, C. J. Gray, C. E. Eyers, Nat. Chem. 2014, 6, 281-294; b) M. T. Bowers, P. R. Kemper, G. von Helden, P. A. M. van Koppen, Science 1993, 260, 1446-1451; c) E. R. Brocker, S. E. Anderson, B. H. Northrop, P. J. Stang, M. T. Bowers, J. Am. Chem. Soc. 2010, 132, 13486 13494; d) J. Ujma, C. M. De, O. Chepelin, H. Levene, C. Moffat, S. J. Pike, P. J. Lusby, P. E. Barran, Chem. Commun. 2012, 48, 4423-4425.
[14] a) A. A. Shvartsburg, M. F. Jarrold, Chem. Phys. Lett. 1996, 261, 86-91; b) M. F. Jarrold, Annu. Rev. Phys. Chem. 2000, 51, 179-207; c) A. A. Shvartsburg, B. Liu, K. W. M. Siu, K.-M. Ho, J. Phys. Chem. A 2000, 104, 6152-6157.
[15] X. Li, Y.-T. Chan, M. Casiano-Maldonado, J. Yu, G. A. Carri, G. R. Newkome, C. Wesdemiotis, Anal. Chem. 2011, 83, 6667-6674.

Received: July 11, 2014

Published online on August 25, 2014

[^0]: [a] Dr. X. Lu, ${ }^{+}$K. Guo, J. Wang, M. Huang, Dr. T.-Z. Xie, Dr. C. N. Moorefield, Prof. S. Z. D. Cheng, Prof. C. Wesdemiotis, Prof. G. R. Newkome
 Department of Polymer Science, Department of Chemistry
 The University of Akron
 302 Buchtel Common, Akron, OH 44325 (USA)
 E-mail: wesdemiotis@uakron.edu
 newkome@uakron.edu
 Homepage: http://www.dendrimers.com
 [b] Prof. X. Li^{+}
 Department of Chemistry and Biochemistry
 Texas State University
 601 University Drive, San Marcos, Texas 78666 (USA)
 [c] Prof. J.-L. Wang
 College of Chemistry, Beijing Institute of Technology Beijing, 100081 (China)
 ${ }^{[}{ }^{+}$Both authors contributed equally to this work.
 Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/chem. 201404358.

