Categories
Innovate4Health Innovation

Innovate4Health: Meeting the Needs of Rural Africa with Fyodor’s Point-of-Care Testing for Malaria

This post is one of a series in the #Innovate4Health policy research initiative.

Innovate4HealthBy Jaci Arthur

Every year, more than 200 million cases of malaria are reported worldwide. It can often be mistaken for a less serious malady, as symptoms include “fever, chills, and flu-like illness.” If quickly identified, the disease is treatable. Yet more than 655,000 people, mostly children in sub-Saharan Africa, died from malaria in 2016.

Expeditious diagnosis of the disease can result in faster treatment and lower mortality rates. The patented Urine Malaria Test (UMT) developed by Dr. David Sullivan, a Johns Hopkins Bloomberg School of Public Health professor and microbiologist, addresses this global challenge by offering a rapid, accurate, more convenient, and less expensive alternative to traditional laboratory testing. The UMT is also the first point-of-care (POC) test for malaria that does not require the use of trained personnel or a blood sample.

90% of all malaria-related deaths in 2015 occurred on the African continent. Much of this can be attributed to a lack of access to health services and personnel due to poverty, remoteness, and a general lack of healthcare infrastructure. According to a 2011 report, about 31% of Ethiopians live on less than $1.25 a day. Even when health services are free of charge, trips to medical facilities are quite costly for the average, rural African because patients will often have to take an entire day off from work to travel.

In Niger, a patient may have to walk more than four hours to receive medical treatment at an overcrowded, ill-equipped facility. Many people turn to presumptive diagnosis or self-medication at the first sign of a fever, resulting in widespread drug resistance and more expensive treatments. Meanwhile, others gamble on the chance it is simply a virus that will pass, never seeking diagnosis or treatment.

On average, there are 1.15 health workers for every 1,000 people in sub-Saharan Africa, with numbers as low as 0.4 physicians for every 10,000 people in countries like Chad. The few laboratories in rural areas that can identify diseases such as malaria are underfunded, short-staffed, and ill-equipped. Although there are several POC tests for malaria, most of them require trained personnel taking a blood sample. Having a proper diagnosis within twenty-four hours of the onset of symptoms can reduce the mortality rate, but such diagnosis is difficult for most Africans. All these factors lead to a deadly combination, especially for those in rural Africa.

Maryland-based Fyodor Biotechnologies was founded in 2008 by Nigerian biotechnologist Eddy Agbo specifically to address these problems. In 2009, the company was granted an exclusive worldwide license from Johns Hopkins University to research, develop, and commercialize the UMT.

As its name suggests, the UMT tests a patient’s urine, rather than blood, for “novel Plasmodium proteins,” and it provides results in less than twenty-five minutes, thus abating fears, eliminating the need for presumptive diagnosis, and reducing costly, lengthy, and unnecessary trips. Unlike other tests for malaria, the UMT can be taken at home and is as easy to use as an at-home pregnancy test. The UMT is currently priced at about two dollars each; however, Dr. Agbo intends for the price to be reduced once production increases.

Preclinical studies were conducted by researchers at Johns Hopkins University, and the UMT is currently in clinical validation. Fyodor intends to seek concurrent regulatory clearance from both the Nigerian National Agency for Food and Drug Administration and Control (NAFDAC) and the US Food and Drug Administration (FDA).

Initial commercialization efforts will be focused in Dr. Agbo’s home country of Nigeria before expanding to other areas significantly affected by malaria. Nigeria accounts “for 25% of all malaria cases in the African region.” Testing is also currently underway at Fyodor Biotechnologies for a “second generation broad-based Urine Malaria Test (UMT-Broad),” which will be useful for detecting other types of infection.

Fyodor Biotechnologies stepped onto the global market specifically to meet the needs of people in malaria endemic regions and reduce the mortality rate associated with this treatable disease. The company relies heavily on its exclusive license to Johns Hopkins University’s patent, as research, development, and production of the UMT are currently its sole function.

Fyodor’s two-dollar, at-home test is the perfect counter to claims that intellectual property rights, specifically patents, result in expensive healthcare and a lack of access to necessary medical services. Intellectual property rights have made quick, efficient, low-cost, and convenient testing for malaria a reality.

The UMT provides an ideal example of how patented innovation can conquer global challenges. It is a reasonable, rapid, efficient, convenient, economical alternative to a system that cannot meet the needs of the rural poor. And it is a reminder that innovation and intellectual property rights can work together for the common good.

#Innovate4Health is a joint research project by the Center for the Protection of Intellectual Property (CPIP) and the Information Technology & Innovation Foundation (ITIF). This project highlights how intellectual property-driven innovation can address global health challenges. If you have questions, comments, or a suggestion for a story we should highlight, we’d love to hear from you. Please contact Devlin Hartline at jhartli2@gmu.edu.

Categories
Innovate4Health

Innovate4Health: mPedigree Battles Counterfeit Drugs Through Innovative Verification System

This post is one of a series in the #Innovate4Health policy research initiative.

Innovate4HealthCounterfeit medicines sold under a product name without proper authorization are a serious threat to global public health. Classified by the World Health Organization (WHO) as substandard, spurious, falsely labelled, falsified and counterfeit (SSFFC) medical products, counterfeit drugs are regularly designed to appear identical to genuine products. However, they fail to effectively treat the disease or condition for which they were intended, and in some instances, they can cause adverse reactions or death.

A recent BBC investigation revealed a multi-billion-dollar global trade in counterfeit drugs resulting in 120,000 deaths a year in Africa alone. And though counterfeit drugs affect economies, health care systems, and patients worldwide, developing nations are most at risk, with an estimated counterfeit rate of 10%-30% of medicines sold. The prevalence of unauthorized drugs in countries with less advanced health care systems has created a dangerous pharmaceutical market with few resources to help consumers distinguish between a drug that could potentially save their life and something that might kill them.

hands holding a phone and a box of "Black Secret Mineral Creme to Powder Foundation SPF 15"In 2007, Ghanaian tech entrepreneur Bright Simons set out to address this troubling threat to public welfare by creating a way to quickly confirm the legitimacy of a pharmaceutical. Realizing that low literacy and technical capacity were limiting the efficacy of existing consumer-targeted controls such as holograms and bar codes, Simons wanted to create a user-friendly system that would help consumers instantly check the authenticity of a drug using their mobile device. Simons envisioned a verification mechanism that would not only enable consumers to protect themselves against dangerous counterfeits, but also help pharmaceutical manufacturers defend their brands and shield shopkeepers from the liability of selling fake drugs.

Simons partnered with drug companies and other stakeholders to upload pedigree information from individual packs of medicine into a central registry using standard mass serialization methods similar to those employed in the radio-frequency identification (RFID) barcode system familiar in the United States and other developed countries. Calling his company mPedigree, Simons built a mobile verification service that enables consumers to text a product code that is then checked against the registry of authentic medicines, instantly verifying that the medicine they’ve acquired is legitimate and safe.

Since forming mPedigree in 2009, Simons has brought his system to Nigeria, Kenya, and India, with pilot programs in Uganda, Tanzania, South Africa, and Bangladesh. In 2015, mPedigree codes appeared on over 500 million drug packets from clients such as AstraZeneca, Roche, and Sanofi, and its verification network has been essential in combating a serious counterfeit antimalarial drug scheme that was putting thousands of Africans at risk.

Though mPedigree is best known for its work with pharmaceutical certification, Simons has expanded its verification system to address counterfeits in other industries through his development of the cutting-edge supply chain transformation technologies, EarlySensor and Goldkeys.

mPedigree’s EarlySensor technology offers a proactive solution to companies plagued by unauthorized imitations by identifying patterns in counterfeiting activity and alerting partner government agencies of suspicious trends. The project “scans large pools of authentication, traceability, supply chain & logistical referencing, and user-generated data to mine insights and plot evolving patterns” to empower both manufacturers and consumers to predict counterfeiting activity before it occurs. EarlySensor technology is currently used by three major pharmaceutical and cosmetic companies in Nigeria, and empirical analysis has shown a 65% reduction in the circulation of counterfeit versions of their brands.

With Goldkeys, mPedigree has developed a set of web tools to provide brand owners with “complete, real-time, control of key events in their supply chain.” The technology enables companies to manage distribution networks and retail point integration, as well as track end-consumer activity through web applications and cloud computing. Goldkeys also allows consumers to “call in” their product by voice call or text on a mobile device to ensure authenticity and receive consumer support.

mPedigree - Bringing Quality to LifeThrough the combination of EarlySensor and Goldkeys, mPedigree’s innovative technology is facilitating the protection of both brand owners and consumers and ensuring that data collection and authentication mechanisms are leading to the safer distribution of medicines, cosmetics, seeds, and other essential products.

As a company dedicated to helping others protect their product reputation and brand, mPedigree understands the importance of effective IP rights and has utilized patent, copyright, and trademark protection in the development and commercialization of its own brands and services. In the early days of the company, as it formed partnerships with tech and pharmaceutical industry giants, mPedigree was careful to retain the rights to its creations, with Simons stating in a recent interview that, “[w]e had one interest to protect: our intellectual property.”

hands holding a phone and a seed packetBy providing a dynamic link between consumers and manufacturers, mPedigree is making communications at the point of purchase routine and creating value for consumers, manufacturers, regulatory agencies, and sellers. A project ten years in the making, mPedigree is built on the recognition that protecting intellectual property—both mPedigree’s and its clients—can save lives.

Bright Simons’ vision and dedication to fighting the counterfeit drug epidemic in Africa and beyond through pharmaceutical verification is a testament to the vital role innovation and technology play in confronting global challenges, and as its motto states, mPedigree is indeed “bringing quality to life.”

*Images courtesy of mPedigree Global Image Archives

#Innovate4Health is a joint research project by the Center for the Protection of Intellectual Property (CPIP) and the Information Technology & Innovation Foundation (ITIF). This project highlights how intellectual property-driven innovation can address global health challenges. If you have questions, comments, or a suggestion for a story we should highlight, we’d love to hear from you. Please contact Devlin Hartline at jhartli2@gmu.edu.