Igor Tsukerman

Teaching, Research and a Few Extras

Publications

Books

Electromagnetic Analysis: From Electrostatics to Photonics; five-volume reference set, World Scientific, 2020.

Computational Methods for Nanoscale Applications: Particles, Plasmons and Waves. Springer; 2nd edition, 2020.

Plasmonics and Plasmonic Metamaterials: Analysis and Applications. Gennady Shvets, Igor Tsukerman (eds.), World Scientific Publishing Company; 2011.

                   

obj129geo68pg1p5           obj128geo65pg1p5

Book Chapters

  1. Fritz Kretzschmar, Sascha M. Schnepp, Herbert Egger, Farzad Ahmadi, Nabil Nowak, Vadim A. Markel, Igor Tsukerman. The Power of Trefftz Approximations: Finite Difference, Boundary Difference and Discontinuous Galerkin Methods; Nonreflecting Conditions and Non-Asymptotic Homogenization. In: Finite Difference Methods,Theory and Applications. Eds: Ivan Dimov, István Faragó, Lubin Vulkov.  ISBN: 978-3-319-20238-9 (Print), 978-3-319-20239-6 (Online).
  2. Gennady Shvets, Igor Tsukerman, Preface to Plasmonics and Plasmonic Metamaterials: Analysis and Applications. World Scientific Publishing Company; 2011.
  3. Masha Sosonkina and Igor Tsukerman, Parallel solvers for flexible approximation schemes in multiparticle simulation, Lecture Notes in Computer Science, Springer: Berlin / Heidelberg, vol. 3991 (eds. Vassil N. Alexandrov, Geert Dick van Albada, Peter M.A. Sloot, Jack Dongarra), pp. 54-62, 2006.  ISBN: 3-540-34379-2, ISSN: 0302-9743, DOI: 10.1007/11758501_12.
  4. Achim Basermann, Igor Tsukerman, Parallel Generalized Finite Element Method for Magnetic Multiparticle Problems, Springer Series: Lecture Notes in Computational Science and Engineering, LNCS 3402, M. Daydé et al. (Eds.), pp. 325-339, 2005.http://www.springerlink.com/index/10.1007/11403937_26
  5. Igor Tsukerman, Toward Generalized Finite Element Difference Methods for Electro- and Magnetostatics, Springer Series: Mathematics in Industry, Vol.  4, W.H.A. Schilders, Jan W. ter Maten, S.H.M.J. Houben, (Eds.), pp. 58−77, 2004.  ISBN: 3-540-21372-4.
  6. Th. Apel, M. Berzins, P.K. Jimack, G. Kunert, Alexander Plaks, Igor Tsukerman, M. Walkley, Mesh Shape and Anisotropic Elements: Theory and Practice, in The Mathematics of Finite Elements and Applications X,  J.R. Whiteman (ed.), Elsevier: Amsterdam, 2000, pp. 367-376.
  7. Adalbert Konrad, I.A. Tsukerman, Applications of Integral and Differential Methods to Electromagnetic Field Problems, in: Finite Elements, Electromagnetics and Design, S.R.H. Hoole (ed.), Elsevier: Amsterdam, 1995.

Book Review

Igor Tsukerman, Book review: A. Bondeson, T. Rylander and P. Ingelström, Computational Electromagnetics, Springer, 2005. SIAM Review, vol. 49, No. 1, pp. 173-175, 2007.

Refereed  Journal  Publications

  1. Igor Tsukerman and Vadim A. Markel. Topological features of Bloch impedance.  Europhys Lett 144(1):16002, Oct 2023 (open access).
  2. A. N. M. Shahriyar Hossain, Igor Tsukerman, and Vadim Markel. Homogenization of periodic structures: One layer is “bulk”. (Editor’s Choice.) Europhys Lett 138(3):35001, 2022.
  3. Osama Alkhateeb, A. N. M. Shahriyar Hossain, Igor Tsukerman, Nathan Ida. Finite element analysis and design of beam steering devices with global control. COMPEL, Mar 2022 (Early Access).
  4. Igor Tsukerman. Computational electromagnetics: A miscellany. J 4(4), pp. 881-896, 2021 (open access).
  5. Markus Schöbinger,  Igor Tsukerman, and Karl Hollaus. Effective medium transformation: The case of eddy currents in laminated iron cores. IEEE Transactions on Magnetics 57(11), Art no. 6302506, Nov 2021.
  6. Igor Tsukerman. Polarization of arbitrary charge distributions: The classical electrodynamics perspective. Reviews in Physics 7, 100061, 2021 (open access).
  7. Igor Tsukerman. Accuracy of difference schemes in electromagnetic applications: a Trefftz analysis. IEEE Trans Magn 57(6), 7200804,  2021.
  8. A.N.M. Shahriyar Hossain, Igor Tsukerman. Non-asymptotic homogenization of 3-D periodic structures. Physics Letters A, 398, 127278, 2021.
  9. Igor Tsukerman, A N M Shahriyar Hossain, Y. D. Chong. Homogenization of layered media: Intrinsic and extrinsic symmetry breaking. EPL (Europhysics Letters), 133(1), 2021.
  10. M. Schöbinger, K. Hollaus and I. Tsukerman. Nonasymptotic homogenization of laminated magnetic cores. IEEE Trans Magn 56(2), art. No. 7509504, 2020.
  11. Farzad Ahmadi, Yilmaz Sozer, Michael J. Donahue, Igor Tsukerman. Low-loss and lightweight magnetic material for electrical machinery. IET Electric Power Applications 14(2), pp. 282–290, 2020.
  12. Farzad Ahmadi, Michael J. Donahue, Yilmaz Sozer, Igor Tsukerman. Micromagnetic study of soft magnetic nanowires. AIP Advances 9(12), 125047, 2019.
  13. Igor Tsukerman, Shampy Mansha, Y. D. Chong, V. A. Markel.  Trefftz approximations in complex media: Accuracy and applicationsComputers & Math with Appl  77(6), pp. 1770-1785, 2019.
  14. Burak Tekgun, Yilmaz Sozer, Igor Tsukerman, Parag Upadhyay, Steven Englebretson. Core loss estimation in electric machines with flux-controlled core loss testerIEEE Trans Industry Appl 55(2), pp. 1299-1308, 2019.
  15. Shampy Mansha, Igor Tsukerman, Y. D. Chong. The FLAME-slab method for electromagnetic wave scattering in aperiodic slabs. Optics Express 25(26), 32602-32617, 2017.
  16. Igor Tsukerman. Classical and non-classical effective medium theories: New perspectives (Perspective Article). Physics Letters A, 381(19), pp. 1635–1640, 2017.
  17. Vadim A. Markel and Igor Tsukerman, Applicability of effective medium description to photonic crystals in higher bands: Theory and numerical analysis. Phys. Rev. B 93, 224202, 2016.
  18. Igor Tsukerman and Vadim A. Markel. Nonasymptotic homogenization of periodic electromagnetic structures:  Uncertainty principles, Phys Rev B, 93, 024418, 2016. Preprint.
  19. A. Paganini, L. Scarabosio, R. Hiptmair, I. Tsukerman. Trefftz approximations: a new framework for nonreflecting boundary conditions, IEEE Trans on Magn., 52(3), 7201604, 2016. Preprint.
  20. Burak Tekgun, Yilmaz Sozer, and Igor Tsukerman. Modeling and parameter estimation of split-single phase induction motorsIEEE Trans on Industry Applications, 52(2), pp. 1431–1440, 2016.
  21. Herbert Egger, Fritz Kretzschmar, Sascha M. Schnepp, Igor Tsukerman, Thomas Weiland. Transparent boundary conditions for a discontinuous Galerkin Trefftz method. Applied Mathematics and Computation, vol. 267, pp. 42-55,  2015. Preprint.
  22. Igor Tsukerman  and Vadim A. Markel. A nonasymptotic homogenization theory for periodic electromagnetic structures, Proc Royal Society A, vol. 470, 2014.0245, 2014. doi:10.1098/rspa.2014.0245.
  23. Fritz Kretzschmar, Sascha M. Schnepp, Igor Tsukerman, Thomas Weiland. Discontinuous Galerkin methods with Trefftz approximations. J Comp & Applied Math, vol. 270, pp. 211–222, 2014.
  24. V. A. Markel and I. Tsukerman, Current-driven homogenization and effective medium parameters for finite samples, Physical  Review B, vol. 88, No. 12, article 125131, 2013.  Preprint.
  25. X. Y. Z. Xiong, L. J. Jiang, V. A. Markel and I. Tsukerman, Surface waves in three-dimensional electromagnetic composites and their effect on homogenization, Optics Express, vol. 21, No. 9, pp. 10412–10421, 2013.
  26. O. Alkhateeb, I. Tsukerman, A boundary difference method for electromagnetic scattering problems with perfect conductors and corners, IEEE Trans on Antennas and Propagation, vol. 61, No. 10, pp. 5117–5126, 2013.
  27. D. H. Mac, S. Clenet, J. C. Mipo, I. Tsukerman, A priori error indicator in the transformation method for problems with geometric uncertainties, IEEE Trans on Magn., vol. 49, No. 5, pp. 1597–1600, 2013.
  28. Igor Tsukerman. Nonlocal homogenization of metamaterials by dual interpolation of fields, J. Opt. Soc. Am. B, vol. 28, No. 12, pp. 2956-2965, 2011.
  29. Anders Pors, Igor Tsukerman, Sergey I. Bozhevolnyi, Effective constitutive parameters of plasmonic metamaterials: Homogenization by dual field interpolation, Phys Rev E, vol. 84, 016609, 2011.
  30. Igor Tsukerman, Effective parameters of metamaterials: a rigorous homogenization theory via Whitney interpolation, J. Opt. Soc. Am. B, vol. 28, pp. 577-586, 2011.
  31. Jianhua Dai, Helder Pinheiro, J.P. Webb, Igor Tsukerman, Flexible approximation schemes with numerical and semi-analytical bases, COMPEL, vol. 30, No. 2, pp. 552-573, 2011.
  32. Igor Tsukerman, A singularity-free boundary equation method for wave scattering, IEEE Trans on Antennas and Propagation, vol. 59, No. 2, pp. 555-562, 2011.
  33. Guillaume Krebs, Stephane Clénet, Igor Tsukerman, Overlapping finite elements for arbitrary surfaces in 3-D, IEEE Trans Magn, vol. 46, No. 8,   pp. 3473-3476,  2010.
  34. Igor Tsukerman, Trefftz difference schemes on irregular stencils, Journal of Computational Physics, vol. 229, pp. 2948-2963, 2010.
  35. Igor Tsukerman, Superfocusing by nanoshells, Optics Lett, vol. 34, No. 8, pp. 1057-1059, 2009.
  36. Igor Tsukerman, Quasi-homogeneous backward-wave plasmonic structures: theory and accurate simulationJ of Optics A: Pure and Applied Optics, vol. 11, No 11, 114025, 2009.
  37. Igor Tsukerman, František Čajko, Jianhua Dai, Electrodynamic analysis of plasmonic enhancement (invited paper), NanoBiotechnology. Published online: 30 January 2009.http://dx.doi.org/10.1007/s12030-008-9016-y
  38. M. Brehm, A. Schliesser, F. Čajko, I. Tsukerman, and F. Keilmann, Antenna-mediated back-scattering efficiency in infrared near-field microscopy, Opt. Express, vol. 16, pp. 11203-11215, 2008.
  39. Igor Tsukerman, Negative refraction and the minimum lattice cell size, J. Opt. Soc. Am. B, vol. 25, pp. 927-936, 2008.
  40. František Čajko and Igor Tsukerman, Flexible approximation schemes for wave refraction in negative index materials, IEEE Trans. Magn., vol. 44,  No. 6, pp. 1378-1381, 2008.
  41. Igor Tsukerman and František Čajko, Photonic band structure computation using FLAME, IEEE Trans. Magn., vol. 44,  No. 6, pp. 1382-1385, 2008.
  42. Jianhua Dai, Igor Tsukerman, Flexible approximation schemes with adaptive grid refinement, IEEE Trans. Magn., vol. 44,  No. 6, pp. 1206-1209, 2008.
  43. Jianhua Dai, Igor Tsukerman, František Čajko, and Mark I. Stockman, Electrodynamic effects in plasmonic nanolenses, Phys. Rev. B, 77, 115419, 2008.
  44. J. Dai, I. Tsukerman, A. Rubinstein, S. Sherman, New computational models for electrostatics of macromolecules in solvents, IEEE Trans. Magn., Vol. 43,  No. 4, pp. 1217-1220, 2007.
  45. H. Pinheiro, J.P. Webb, I. Tsukerman, Flexible local approximation models for wave scattering in photonic crystal devices, IEEE Trans. Magn., Vol. 43,  No. 4, pp. 1321-1324, 2007.
  46. Igor Tsukerman, A class of difference schemes with flexible local approximation, The Journal of Computational Physics, vol. 211, No. 2, pp. 659-699, 2006.
  47. D. Mehtani, N. Lee, R.D. Hartschuh, A. Kisliuk, M.D. Foster, A.P. Sokolov, F. Čajko and I. Tsukerman, Optical properties and enhancement factors of the tips for apertureless near-field optics, Journal of Optics A: Pure and Applied Optics, vol. 8, S183-S190, 2006.
  48. Igor Tsukerman, Electromagnetic applications of a new finite-difference calculus, IEEE Trans. Magn., vol. 41, No. 7, pp. 2206-2225, 2005.
  49. Igor Tsukerman, Flexible local approximation method for electro- and magnetostatics, IEEE Trans. Magn., v. 40, No. 2, pp. 941-944, 2004.
  50. Igor Tsukerman, Efficient computation of long-range electromagnetic interactions without Fourier Transforms,  IEEE Trans. Magn., v. 40, No. 4, pp. 2158-2160, 2004.
  51. Derek Halverson, Gary Friedman, Igor Tsukerman, Local approximation matching for open boundary problems, IEEE Trans. Magn., v. 40, No. 4, pp. 2152-2154, 2004.
  52. Igor Tsukerman, Spurious numerical solutions in electromagnetic resonance problems,  IEEE Trans. Magn., vol. 39, No. 3, pp. 1405-1408, 2003.
  53. Igor Tsukerman, Symbolic algebra as a tool for understanding edge elements, IEEE Trans. Magn., vol. 39,  No. 3, pp.1111-1114, 2003.
  54. Igor Tsukerman, General tangentially continuous vector elements, IEEE Trans. Magn., vol. 39, No. 3, pp. 1215-1218, 2003.
  55. Alexander Plaks, Igor Tsukerman, Gary Friedman, Benjamin Yellen, Generalized Finite Element Method for magnetized nanoparticles, IEEE Trans. Magn., vol. 39, No. 3, pp.  1436-1439, 2003.
  56. Igor Tsukerman, Finite element differential-algebraic systems for eddy current problems,  Numerical Algorithms, vol. 31, pp.319-335, 2002.
  57. Leonid Proekt, Igor Tsukerman, Method of overlapping patches for electromagnetic computation, IEEE Trans. Magn., vol. 38, No. 2, pp.741-744, 2002.
  58. Leonid Proekt, Sergey Yuferev, Igor Tsukerman, Nathan Ida, Method of overlapping patches for electromagnetic computation near imperfectly conducting cusps and edges,  IEEE Trans. Magn., vol. 38, No. 2, pp.649-652, 2002.
  59. I.A. Tsukerman, V.V. Dombrovski, Finite element simulation of time-dependent electromagnetic fields in the end zone of superconducting motors, IEEE Trans. Magn.,  vol. 38, No. 2, pp.1265-1268, 2002. pdf online
  60. Leonid B. Proekt and Igor Tsukerman, Accuracy of the finite element solution of a wave problem with a curved perfectly matched layer, IEEE Trans. Magn., vol. 37, No. 5, Part 1, pp. 3246-3250, 2001.  pdf online
  61. Alexander Plaks, Igor Tsukerman, S. Painchaud, and L. Tabarovsky, Multigrid methods for open boundary problems in geophysics,  IEEE Trans. Magn., vol. 36, No. 4, p.633-636, 2000.  pdf online
  62. Igor Tsukerman and Alexander Plaks, Hierarchical basis multilevel preconditioners for 3D magnetostatic problems, IEEE Trans. Magn., vol. 35, No.3, pp.1143-1146, 1999.  pdf online
  63. Igor Tsukerman and Alexander Plaks,  Refinement strategies and approximation errors for tetrahedral elements, IEEE Trans. Magn., vol. 35, No. 3, pp.1342-1345, 1999.  pdf online
  64. I.A.Tsukerman, Alexander Plaks, H.N. Bertram, Multigrid methods for computation of magnetostatic fields in magnetic recording problems,  J. Applied Phys., vol. 83, No. 11, pp.6344-6346, 1998. pdf online
  65. I.A. Tsukerman, Alexander Plaks, Comparison of accuracy criteria for approximation of conservative fields on tetrahedra,  IEEE Trans. Magn., vol. 34, pp.3252-3255, 1998.  pdf online
  66. I.A. Tsukerman, A general accuracy criterion for finite element approximation, IEEE Trans. Magn., vol. 34, pp.2425-2428, 1998.  pdf online
  67. I.A. Tsukerman,  Approximation of conservative fields and the element ‘edge shape matrix’, IEEE Trans. Magn., vol. 34,  pp.3248-3251, 1998.  pdf online
  68. I.A. Tsukerman,  Stability of the moment method in electromagnetic problems, IEEE Trans. Magn., vol. 33, No. 2,  pp.1402-1405, 1997.
  69. I.A. Tsukerman, Accurate computation of  ‘ripple solutions’ on moving finite element meshes, IEEE Trans. Magn., vol. 31, No. 3, pp.1472-1475, 1995.  pdf online
  70. I.A. Tsukerman, A stability paradox for time-stepping schemes in coupled field-circuit problems, IEEE Trans. Magn., vol. 31, No. 3, pp.1857-1860, 1995. pdf online
  71. I.A. Tsukerman, J.D. Lavers, A. Konrad, Using complementary formulations for accurate computations of magnetostatic fields and forces in a synchronous motor, IEEE Trans. Magn., vol. 30, No. 5, pp.3479-3482, 1994.  pdf online
  72. I.A. Tsukerman, Application of multilevel preconditioners to finite element magnetostatic problems, IEEE Trans. Magn., vol. 30, No. 5, pp.3562-3565, 1994.
  73. I.A. Tsukerman, Fast finite element solvers for problems with magnetic materials, IEEE Trans. Magn., vol. 29, No. 6, pp.2365-2367, 1993.
  74. I.A. Tsukerman, Node and edge element approximation of discontinuous fields and potentials, IEEE Trans. Magn., vol. 29,  No. 6, pp.2368-2370, 1993.
  75. Adalbert Konrad and I.A. Tsukerman, Comparison of high- and low-frequency electromagnetic field analysis, J. Phys. III  France,  vol. 3, pp.363-371, 1993.  pdf online
  76. I.A. Tsukerman, A. Konrad, G. Bedrosian and M.V.K. Chari, A survey of numerical methods for transient eddy current problems, IEEE Trans. Magn., vol. 29, No. 2, pp.1711-1716, 1993.  pdf online
  77. I.A. Tsukerman, A. Konrad, G. Meunier and J.C. Sabonnadiere, Coupled field-circuit problems: trends and accomplishments, IEEE Trans. Magn., vol. 29, No. 2, pp.1701-1704, 1993.  pdf online
  78. I.A. Tsukerman, A. Konrad, J.D. Lavers, A method for circuit connections in time-dependent eddy current problems, IEEE Trans. Magn., vol. 28, No. 2, pp.1299-1302, 1992.   pdf online
  79. I.A. Tsukerman, Overlapping finite elements for problems with movement, IEEE Trans. Magn., vol. 28, No. 5, pp.2247-2249, 1992.
  80. I.A. Tsukerman, Error estimation for finite element solutions of the eddy currents problem, COMPEL 9(2), pp.83-98, 1990.  pdf online
  81. I.A. Tsukerman, On the accuracy of numerical calculation of eddy currents, Izvestiya Akad. Nauk SSSR. Energetika i transport, No.5, pp.83−93, 1989 [in Russian].
  82. I.A. Tsukerman, Finite-element approximation of the two-component vector function in the scalar magnetic potential method, Power Engineering (USSR Academy of Sciences), vol. 26, No. 2, pp.22−31,1988.
  83. K.S. Demirchyan, Yu.V. Rakitskii, Yu.P. Kizimovich, I.A. Tsukerman, Calculation of three-dimensional electromagnetic fields by the scalar magnetic potential method: numerical techniques and software, Power Engineering (USSR Academy of Sciences), vol. 26, No. 4, pp.146−152, 1988.
  84. Yu.P. Kizimovich, I.A. Tsukerman, Mathematical modelling of a three-dimensional quasisteady electromagnetic field in steady-state and transient regimes by means of the scalar magnetic potential,Power Engineering (USSR Academy of Sciences), vol. 26, No. 4, pp.153−158, 1988.
  85. Yu.P. Kizimovich, I.A. Tsukerman, Mathematical modelling of a quasi-steady electromagnetic field,Power Engineering (USSR Academy of Sciences), vol. 25, No. 2, pp.55−66, 1987.
  86. L.P. Boriskina, V.D. Varshavsky, L.A. Efimenko, I.A. Tsukerman, Application of the finite element method to the computation of the external magnetic field of electric machines, Elektrichestvo, No.9, pp.56−59, 1987 [in Russian].
  87. G.M.Khutoretsky, V.D. Varshavsky, I.A. Tsukerman, Computer simulation and analysis of electromagnetic processes when designing turbine generators with non-magnetic rotors, Elektrotekhnika,No.10, pp.46−50, 1987. [in Russian].
  88. G.M. Khutoretsky, V.D. Varshavsky, I.A. Tsukerman, Computer modelling of rotor thermal field in large cryoturbogenerator, Power Engineering (USSR Academy of Sciences), vol. 24, No. 1, pp.151−155, 1986.
  89. Yu.V. Rakitskii, E.B. Belopol’skaya, Yu.P. Kizimovich, I.A. Tsukerman, Some iterative methods for solution of variational-difference analogs of steady-state field equations, Power Engineering (USSR Academy of Sciences), vol. 24, No. 1, pp.67−76, 1986.
  90. Yu.V. Rakitskii, E.D. Shchukin, V.S. Yushchenko, I.A. Tsukerman, Yu.B. Suris, A.I. Slutsker, Mechanism of the formation of energy fluctuation and a method for studying it, Doklady. Physical chemistry: Proceedings of the Academy of Sciences of the USSR, vol. 285, No. 4, pp.1204−1207, 1985.  ISSN: 0012-5016.  pdf online
  91. G.M. Khutoretskii, V.D. Varshavskii, I.A. Zuckermann, Computation and analysis of high-power cryogenic turbogenerator rotor heating conditions, Electric Technology U.S.S.R. No.2, pp.69−75, 1985.
  92. S.P. Voskoboinikov, Yu.B. Senichenkov, I.A. Tsukerman, The rate of convergence of the two-step gradient descent method, USSR Comp. Maths. and Math. Phys., vol. 23, No. 5, pp.131−133, 1983.

Conference Papers

  1. Igor Tsukerman and Vadim Markel. Bulk-Edge Correspondence and Monotonicity of Bloch Impedance. PIERS, Prague, the Czech Republic, July 2023.
  2. Igor Tsukerman and Vadim Markel. Edge Modes, Symmetries, and Zak Phases: Analysis via Bloch Impedance. CLEO, Munich, Germany, June 2023.
  3. Markus Schöbinger, Karl Hollaus, Igor Tsukerman, and Vadim A. Markel. Nontrivial Interface Phenomena in Photonic Crystals. ISEM’2022, Thessaloniki, Greece, June 2022 (online).
  4. Markus Schöbinger, Karl Hollaus, A N M Shahriyar Hossain, Igor Tsukerman, and Vadim A. Markel. Periodic Electromagnetic Structures: Paradoxes of Homogenization. ISEM’2022, Thessaloniki, Greece, June 2022 (online).
  5. Igor Tsukerman, A N M Shahriyar Hossain, Vadim A. Markel, and Y. D. Chong. Homogenization of Metamaterials: Symmetry Breaking and “Bulk Transition”. Metamaterials: Designing Wave Propagation with a Focus on Electrodynamics. Bad Honnef, Germany, February 2022.
  6. Igor Tsukerman, A N M Shahriyar Hossain, Vadim A. Markel, and Y. D. Chong. Electromagnetic Waves in Periodic Heterostructures: Symmetry Breaking, “Bulk Transition” and Bloch Bands. Conference on Mathematics of Wave Phenomena. Karlsruhe, Germany, February 2022 (online).
  7. Igor Tsukerman, A N M Shahriyar Hossain, Vadim A. Markel, and Y. D. Chong. Homogenization of Metamaterials: Symmetry Breaking and “Bulk Transition”. Metamaterials: Designing Wave Propagation with a Focus on Electrodynamics. Bad Honnef, Germany, February 2022.
  8. Igor Tsukerman. Order of Difference Schemes Near Material Interfaces: a Trefftz Analysis. CEFC’2020, Pisa, Italy (online).
  9. Markus Schöbinger, Karl Hollaus, and Igor Tsukerman. Effective BH-Curves for Laminated Magnetic Cores. CEFC’2020, Pisa, Italy (online)
  10. Markus Schöbinger, Karl Hollaus, and Igor Tsukerman. Nonasymptotic homogenization of laminated magnetic cores. Compumag’2019, Paris, France, July 2019.
  11. A. N. M. Shahriyar Hossain, Igor Tsukerman, and Y. D. Chong. Accurate homogenization of layered structures and a breakdown of effective medium theory. IEEE APS-URSI, Atlanta, July 2019.
  12. A. N. M. Shahriyar Hossain and Igor Tsukerman. Dynamic beam steering by metaguides and multilattices. IEEE APS-URSI, Atlanta, July 2019.
  13. A. N. M. Shahriyar Hossain, Igor Tsukerman, and Y. D. Chong. Homogenization of layered media: the role of magnetoelectric coupling. CLEO®/Europe-EQEC, Munich, Germany, June 2019.
  14. A. N. M. Shahriyar Hossain, Igor Tsukerman. Multilattice structures for dynamic beam forming and steering. CLEO®/Europe-EQEC, Munich, Germany, June 2019.
  15. (Invited plenary talk.) Igor Tsukerman. Trefftz approximations in electromagnetic analysis: Homogenization, difference schemes, random matrices. Mathematics of Wave Phenomena, Karlsruhe, Germany, July 2018.
  16. (Invited plenary talk.) Igor Tsukerman. Periodic and non-periodic structures: Homogenization, Trefftz functions, random matrices. Waves in Complex Photonic Media, Anacapri, Italy, June 2018.
  17. (Invited plenary talk.) Igor Tsukerman. The power of Trefftz approximations: applications in electromagnetic analysis. EMF’2018, Darmstadt, Germany, April 2018.
  18. Shampy Mansha, Osama Alkhateeb, Igor Tsukerman, and Y. D. Chong. Trefftz-based methods for electromagnetic wave scattering in aperiodic slabs. EMF’2018, Darmstadt, Germany, April 2018.
  19. S. Mansha, Y.D. Chong, and I. Tsukerman. The FLAME-slab method for electromagnetic wave scattering in slab structures. PIERS, Singapore, November 2017.
  20. Igor Tsukerman, Shampy Mansha, Y. D. Chong, V. A. Markel. Trefftz approximations in complex media: Accuracy and applications. 7th International Conference on Advanced Computational Methods in Engineering (ACOMEN). Ghent, Belgium, September 2017.
  21. I. Tsukerman, V. A. Markel. Nonasymptotic and nonlocal homogenization of electromagnetic metamaterials. IEEE-ICEAA, Verona, Italy, September 2017.
  22. K. Hollaus, M. Schöbinger, I. Tsukerman. Homogenization of laminated magnetic cores and the role of surface charges. IEEE-ICEAA, Verona, Italy, September 2017.
  23. Igor Tsukerman and Vadim A. Markel. Nonasymptotic and nonlocal homogenization of electromagnetic metamaterials: Theories based on Trefftz approximations. Metamaterials’2017 and the European School on Metamaterials, Marseille, France, August-September 2017.
  24. Burak Tekgun, Yilmaz Sozer, Igor Tsukerman. Core loss estimation in electric machines with flux controlled core loss tester. IEEE Energy Conversion Congress and Exposition (ECCE). Milwaukee, WI, September 2016.
  25. (Invited plenary talk.) Igor Tsukerman and Vadim Markel. Effective medium theories from the 19th to the 21st century: finite samples, interface boundaries, non-asymptotic and nonlocal approximations. AmiTans, Albena, Bulgaria, June 2016.
  26. Z. Bučková, I. Tsukerman, M. Ehrhardt. Traditional vs. Trefftz difference schemes for the Black-Scholes equation, AmiTans, Albena, Bulgaria, June 2016.
  27. Igor Tsukerman and Vadim A. Markel. Homogenization of electromagnetic metamaterials: uncertainty principles and a fresh look at nonlocality. Advanced Concepts in Wave Physics: Topology and Parity-time Symmetries, Hong Kong, January 2016.
  28. Vadim A. Markel and Igor Tsukerman, Perturbative analysis of electromagnetic homogenization near the Γ-point in higher bands, IEEE APS-URSI, Vancouver, July 2015.
  29. Igor Tsukerman and Ralf Hiptmair, New nonreflecting boundary conditions based on Trefftz approximations, IEEE APS-URSI, Vancouver, July 2015.
  30. Igor Tsukerman and Vadim A. Markel, An uncertainty principle in electromagnetic homogenization, IEEE APS-URSI, Vancouver, July 2015.
  31. Igor Tsukerman and Vadim A. Markel, Electromagnetic homogenization: the uncertainty principle and its numerical verification, Compumag, Montreal, June 2015.
  32. Igor Tsukerman, Ralf Hiptmair. Trefftz approximations: a new framework for nonreflecting boundary conditions, Compumag, Montreal, June 2015.
  33. Igor Tsukerman and Vadim A. Markel, Homogenization of periodic electromagnetic structures: An uncertainty principle, PIERS Prague, July 2015.
  34. Sascha M. Schnepp, Fritz Kretzschmar, Herbert Egger, and Igor Tsukerman, A space-time Discontinuous Galerkin Trefftz method for Maxwell’s electrodynamics, PIERS Prague, July 2015.
  35. Igor Tsukerman and Ralf Hiptmair, High-order Trefftz absorbing conditions for wave problems. PIERS Prague, July 2015.
  36. Igor Tsukerman and Ralf Hiptmair, Finite difference schemes and nonreflecting boundary conditions, ICCP9, Singapore, January 2015.
  37. Igor Tsukerman and Vadim A. Markel, A nonasymptotic homogenization theory of periodic electromagnetic structures, ICCP9, Singapore, January 2015
  38. Igor Tsukerman, Vadim Markel, Sascha Schnepp, Fritz Kretzschmar. The power of Trefftz methods: from finite-difference to Discontinuous Galerkin schemes and from macromolecules to metamaterials (invited plenary talk).  Sixth International Conference: Application of Mathematics in Technical and Natural Sciences. Albena, Bulgaria, June 2014. http://2014.eac4amitans.eu/
  39. Igor Tsukerman, Osama AlKhateeb, Fritz Kretzschmar, and Sascha Schnepp, Trefftz approximations: finite-difference, boundary-difference and Discontinuous Galerkin Schemes (invited plenary talk). Sixth Conference on Finite Difference Methods: Theory and Applications, Lozenetz, Bulgaria, June 2014
  40. Fritz Kretzschmar, Farzad Ahmadi, Nabil Nowak, Sascha M Schnepp, Igor Tsukerman, Herbert Egger, Thomas Weiland. Trefftz Absorbing boundary conditions in analytical, Discontinuous Galerkin and finite difference form. International Conference on Electromagnetics in Advanced Applications (ICEAA), Aruba, August 2014. http://www.iceaa-offshore.org/
  41. Igor Tsukerman, Vadim Markel. A nonasymptotic homogenization theory of electromagnetic metamaterials.  International Conference on Electromagnetics in Advanced Applications (ICEAA), Aruba, August 2014. http://www.iceaa-offshore.org/
  42. Fritz Kretzschmar, Sascha M. Schnepp, Igor Tsukerman, and Thomas Weiland. The Discontinuous Galerkin – Trefftz method. FEM2014: The 12th International Workshop on Finite Elements for Microwave Engineering, Chengdu, China, May 2014. http://www.fem2014.org/
  43. Vadim A. Markel, Igor Tsukerman, Xiaoyan Y. Z. Xiong, and Li Jun Jiang. Real-space vs Fourier-space homogenization of metamaterials. The 33rd PIERS Symposium, Taipei, Taiwan, March 2013. http://piers.org/piers2013Taipei/
  44. Xiaoyan Y. Z. Xiong, Li Jun Jiang, Vadim A. Markel, and Igor Tsukerman. Surface waves in electromagnetic metamaterials and their effect on effective parameters. The 33rd PIERS Symposium, Taipei, Taiwan, March 2013. http://piers.org/piers2013Taipei/
  45. Osama Alkhateeb and Igor Tsukerman. Special difference schemes for singularity-free boundary methods. The 33rd PIERS Symposium, Taipei, Taiwan, March 2013. http://piers.org/piers2013Taipei/
  46. Igor Tsukerman. Finite difference–Trefftz schemes in electromagnetics. The 33rd PIERS Symposium, Taipei, Taiwan, March 2013. http://piers.org/piers2013Taipei/
  47. Igor Tsukerman, Vadim A. Markel. Homogenization of metamaterials in Fourier and real spaces (invited). ICNP/AOM Conference, Hong Kong, May 2013 http://www.polyu.edu.hk/feng/icnp_aom2013
  48. Xiaoyan Y.Z. Xiong, Li Jun Jiang, Vadim A. Markel, Igor Tsukerman. Position-dependent effective parameters of metamaterials. ICNP/AOM Conference, Hong Kong, May 2013 http://www.polyu.edu.hk/feng/icnp_aom2013
  49. X. Y. Z. Xiong, L. J. Jiang, V. A. Markel, I. Tsukerman. Numerical methods for effective material parameters of periodic electromagnetic composites at the surface and in the bulk. ACES Conference, March 2013, Monterey, CA.
  50. Fritz Kretzschmar, Sascha Schnepp, Igor Tsukerman, Thomas Weiland. A time domain Discontinuous Galerkin method, FEMTEC 2013 (4th International Congress on Computational Engineering and Sciences), Las Vegas, May 2013.
  51. Ralf Vogelgesang, Bruno Gompf, Igor Tsukerman, Alexandre Dmitriev. Metaglass as a non-local effective medium. META’12, Paris, France, April 2012.
  52. Fritz Kretzschmar, Sascha Schnepp, Igor Tsukerman, Thomas Weiland. The space-time Discontinuous Galerkin Trefftz method, SCEE, ETH Zurich, September 2012
  53. Igor Tsukerman, A non-asymptotic effective medium theory (invited), Integrated Photonics Research, Silicon and Nano Photonics (IPR), Colorado Springs CO, June 2012.
  54. Igor Tsukerman, Trefftz difference schemes and non-asymptotic Trefftz-Whitney homogenization (invited), International Conference on Applied Mathematics (ICAM), Hong Kong, May 2012.
  55. Mac Hung, Stéphane Clénet, Jean-Claude Mipo, Igor Tsukerman, A priori error estimator in the transformation method taking into account the geometric uncertainties, CEFC 2012, November 2012, Oita, Japan.
  56. Igor Tsukerman, From analytical to numerical methods and back: Trefftz schemes, Whitney forms, and metamaterials (invited plenary talk), 7th Workshop on Numerical Methods for Optical Nano Structures, ETH Zurich, July 2011.
  57. Igor Tsukerman, Singularity-free boundary methods for electromagnetics and photonics (invited short course), 7th Workshop on Numerical Methods for Optical Nano Structures, ETH Zurich, July 2011
  58. Igor Tsukerman, From Whitney forms to metamaterials: a rigorous homogenization theory, Nanometa’2011, Seefeld, Austria.
  59. Igor Tsukerman, Non-traditional finite difference and boundary difference schemes (invited plenary talk), IGTE’10, Graz, Austria, September 2010.
  60. C. Classen, B. Bandlow, R. Schuhmann, I. Tsukerman,  FIT & FLAME for sharp edges in electrostatics, Proceedings of 2010 URSI International Symposium on Electromagnetic Theory (EMTS), pp. 56-59; Berlin, 16-19 August 2010.
  61. Guillaume Krebs, Stéphane Clénet and Igor Tsukerman, Overlapping finite elements for arbitrary surfaces in 3D, Compumag’09, Florianópolis, Brazil, November 2009.
  62. Igor Tsukerman, Superfocusing by plasmonic/dielectric layers, Nanometa’2009, Seefeld, Austria.
  63. Igor Tsukerman, František Cajko, Plasmonic Bloch modes: computational methods and sensitivity to external factors (invited paper),  SPIE Optics & Photonics Convention, Paper 7095-23, San Diego, August 2008.
  64. Igor Tsukerman, Cell size bounds for negative-index metamaterials: plasmonic and non-plasmonic cases,  SPIE Optics & Photonics Convention, Paper 7029-43, San Diego, August 2008.
  65. Igor Tsukerman, František Cajko, Computational methods for plasmonic and tunable photonic crystals,  SPIE Optics & Photonics Convention, Paper 7032-54, San Diego, August 2008.
  66. Igor Tsukerman, Plasmonic crystals: computational methods and negative refraction, Gordon Research Conference on Plasmonics, Tilton, NH, July 2008.
  67. F. Cajko, I. Tsukerman, A. Sokolov, M. Brehm, A. Schliesser, and F. Keilmann, Electrodynamic simulation of plasmonic enhancement and antenna effects in near-field microscopy, Gordon Research Conference on Plasmonics, Tilton, NH, July 2008.
  68. Igor Tsukerman, Can negative-index materials be homogeneous?  Paper 6987-65, Photonics Europe, April 2008.
  69. František Cajko, Igor Tsukerman, Fritz Keilmann, and Rainer Hillenbrand, Finite element electrodynamic simulations in near-field infrared microscopy, Paper 6988-22, Photonics Europe, April 2008.
  70. František Cajko and Igor Tsukerman, Flexible approximation schemes for wave refraction in negative index materials, 16th International Conference on the Computation of Electromagnetic Fields (Compumag 2007), June 24-28, 2007, Aachen, Germany.
  71. Jianhua Dai and Igor Tsukerman, Flexible approximation schemes with adaptive grid refinement, 16th International Conference on the Computation of Electromagnetic Fields (Compumag), June 24-28, 2007, Aachen, Germany.
  72. Igor Tsukerman and František Cajko, New methods and applications in nanophotonics, 16th International Conference on the Computation of Electromagnetic Fields (Compumag), June 24-28, 2007, Aachen, Germany.
  73. M. Sosonkina, I. Tsukerman, E. Ivanova, S. Voskoboynikov, Iterative solution techniques for flexible approximation schemes in multiparticle simulations,  9th Copper Mountain Conference on Iterative Methods, April 2006.
  74. J. Dai, I. Tsukerman, A. Rubinstein, S. Sherman, New electrostatic models and computational methods for macromolecules in solvents, Twelfth Biennial IEEE Conference on Electromagnetic Field Computation (CEFC 2006), Miami, FL, April 30 – May 3, 2006.
  75. J. Dai, I. Tsukerman, Flexible difference schemes with numerical bases for electrostatic particle interactions, Twelfth Biennial IEEE Conference on Electromagnetic Field Computation (CEFC 2006), Miami, FL, April 30 – May 3, 2006.
  76. H. Pinheiro, J.P. Webb, I. Tsukerman, Scattering in photonic crystal devices using the Flexible Local Approximation Method, Twelfth Biennial IEEE Conference on Electromagnetic Field Computation (CEFC 2006), Miami, FL, April 30 – May 3, 2006.
  77. I. Tsukerman, F. Cajko, A. Kisliuk, A.P. Sokolov, Design of apertureless tips with very high plasmon field enhancement, Photonics Europe 2006, April 2006, Strasbourg, France.
  78. I. Tsukerman, F. Cajko,  J. Dai, Computational electromagnetics: “Plenty of room at the bottom”, CEM 2006: Sixth International Conference on Computation in Electromagnetics, April 2006, Aachen, Germany.
  79. N. Lee, R.D. Hartschuh, D. Mehtani, A. Kisliuk, M. D. Foster, A. P. Sokolov, I. Tsukerman, Optical properties of tips for apertureless near-field microscopy, the Great Lakes Photonics Symposium, 12-16 June 2006, Dayton, Ohio.
  80. I. Tsukerman, F. Cajko, A.P. Sokolov, New simulation methods for nanoscale photonic structures and negative-refraction materials, the Great Lakes Photonics Symposium, 12-16 June 2006, Dayton, Ohio.
  81. Masha Sosonkina and Igor Tsukerman, Parallel solvers for flexible approximation schemes in multiparticle simulation, ICCS 2006: “Advancing Science through Computation”, University of Reading, UK, May 28-31, 2006.
  82. Igor Tsukerman, F. Cajko,  A.P. Sokolov, Traditional and new simulation techniques for plasmon nanoparticles and photonic crystals, The 5th International Conference on Photonics, Devices and Systems, Prague, Czech Republic, June 2005.
  83. Igor Tsukerman, F. Cajko,  A.P. Sokolov, New finite-difference calculus for simulations in nanoscale optics and photonics, Optics & Photonics 2005, San Diego CA, 31 July – 4 August 2005.
  84. D. Mehtani, N.H. Lee, R. Hartschuh, A. Kisliuk, M.D. Foster, A.P. Sokolov, Igor Tsukerman, Optical properties of the tips for apertureless near-field microscopy, Optics & Photonics 2005, San Diego CA, 31 July – 4 August 2005.
  85. Igor Tsukerman, Electromagnetic finite-difference analysis without the ‘staircase’ effect, 2005 IEEE/ACES International Conference on Wireless Communications and Applied Computational Electromagnetics, Honolulu HI, April 2005.
  86. Igor Tsukerman, A new computational method for plasmon resonances of nanoparticles, 2005 IEEE/ACES International Conference on Wireless Communications and Applied Computational Electromagnetics, Honolulu HI, April 2005.
  87. Igor Tsukerman, Gary Friedman, Derek Halverson, New computational methods for long-range electromagnetic interactions on the nanoscale, Nanotech’2004,  Boston MA.
  88. Gary Friedman, Benjamin Yellen and Igor Tsukerman, Design and simulation of magnetically controlled nanoscale assembly, Fourth IEEE Conference on Nanotechnology, Munich, Germany, August 2004.
  89. Gary Friedman, Benjamin Yellen and Igor Tsukerman, Magnetically controlled assembly of micro- and nanoparticles and its simulation, 5th International Conference on Magnetic Microspheres, Lyon, France, May 2004.
  90. Achim Basermann, Igor Tsukerman, Parallel Generalized Finite Element Method for magnetic multiparticle problems, Proceedings of VECPAR’04, vol. I, pp.9-22.
  91. Igor Tsukerman, Gary Friedman, Fast Fourier Transform Methods for magnetic fields of patterned media, Proceedings of the 9th Joint MMM-Intermag Conference, Anaheim, CA, January 2004.
  92. D. Halverson, G. Friedman Igor Tsukerman, Flexible local approximation method for open boundary problems, Proceedings of the 9th Joint MMM-Intermag Conference, Anaheim, CA, January 2004.
  93. Igor Tsukerman, Efficient computation of long-range electromagnetic interactions without Fourier Transforms, Proceedings of the 9th Joint MMM-Intermag Conference, Anaheim, CA, January 2004.
  94. Igor Tsukerman, New computational methods for electrostatics in macromolecular simulation, Proceedings of Bioinformatics’2003, Stanford, August 2003.
  95. Igor Tsukerman, Finite Element Difference Schemes for electro- and magnetostatics, Compumag’2003, Saratoga Springs,  NY.
  96. Igor Tsukerman, Generalized Finite Element Method for scalar and vector problems in electromagnetism, invited paper, Scientific Computing in Electrical Engineering (SCEE-2002), Eindhoven, The Netherlands, June 2002.
  97. Igor Tsukerman, Some paradoxes and misconceptions in computational electromagnetics, IEEE CEFC Conference, Perugia, Italy, June 2002.
  98. Igor Tsukerman, Tetrahedral edge elements by symbolic algebra, IEEE CEFC Conference, Perugia, Italy, June 2002.
  99. Igor Tsukerman, General tangentially continuous vector elements, IEEE CEFC Conference, Perugia, Italy, June 2002.
  100. Alexander Plaks, Igor Tsukerman, G. Friedman, B. Yellen, Generalized Finite Element Method for magnetized nanoparticles, IEEE CEFC Conference, Perugia, Italy, June 2002.
  101. Igor Tsukerman, A Priori  error estimates in conventional and generalized electromagnetic FEM,  Compumag’2001, Panel Session, Evian, France, July 2001.
  102. Leonid Proekt, Igor Tsukerman, Method of overlapping patches for electromagnetic computation, Compumag’2001, Evian, France, July 2001.
  103. Leonid Proekt, Sergey Yuferev, Igor Tsukerman, Nathan Ida, Method of overlapping patches for electromagnetic computation near imperfectly conducting cusps and edges, Compumag’2001, Evian, France, July 2001.
  104. I.A. Tsukerman, V.V. Dombrovski, Finite element simulation of time-dependent electromagnetic fields in the end zone of superconducting motors, Compumag’2001, Evian, France, July 2001.
  105. Igor Tsukerman and Leonid B. Proekt, Generalized scalar and vector elements for electromagnetic computation, XI International Symposium on Theoretical Electrical Engineering, Linz, Austria, August 2001.
  106. Igor Tsukerman, Finite Element Differential-Algebraic Systems for eddy current problems, Auckland Numerical Ordinary Differential Equations (ANODE), Auckland, New Zealand, January 2001.
  107. Alexander Plaks, Igor Tsukerman, Adaptive multigrid methods for unbounded problems, with applications in geophysics, 16th IMACS World Congress 2000 on Scientific Computation, Applied Mathematics and Simulation, August 2000, Swiss Federal Institute of Technology.
  108. Alexander Plaks, Igor Tsukerman,  Adaptive mesh refinement in open boundary problems,  5th International Workshop on Finite Elements for Microwave Engineering, Boston, June 2000.
  109. Alexander Plaks, Igor Tsukerman, Adaptive multigrid methods for open boundary problems in layered media, IEEE CEFC Conference, Milwaukee, WI, June 2000.
  110. Leonid Proekt and Igor Tsukerman, Accuracy of the Finite Element solution of a wave problem with a non-planar Perfectly Matched Layer, IEEE CEFC Conference, Milwaukee, WI, June 2000.
  111. Alexander Plaks, Igor Tsukerman, Preconditioned adaptive hierarchical basis multigrid method for electromagnetic applications,  invited paper at XXVIth General Assembly of the International Union of Radio Science (URSI),  Toronto, August 1999.
  112. I.A. Tsukerman, Alexander Plaks, Finite Element Matrices and a priori Error Estimates,  invited paper, MAFELAP (Mathematics of Finite Elements and Applications),  London, UK, June 1999.
  113. I.A.Tsukerman, Alexander Plaks, Finite Element Matrices and Interpolation Errors, SciCade Conference, Fraser Island, Australia, August 1999.
  114. Leonid Proekt,  Igor Tsukerman,  David Smith, Sheldon Schultz, Olivier Martin, Numerical modeling of scattering from a dispersive sphere, International Symposium on Nonlinear Electromagnetic Systems, Pavia, Italy, May 1999.
  115. Alexander Plaks, Igor Tsukerman, S. Painchaud, and L. Tabarovsky, Multigrid methods for open boundary problems in geophysics, Compumag’99, Sapporo, Japan, 1999.
  116. Igor Tsukerman  and  Alexander Plaks,  BPX-preconditioned fully adaptive multigrid for micromagnetic problems, 11th International Conference on Domain Decomposition,  Greenwich, UK, July 1998.
  117. Igor Tsukerman  and  Alexander Plaks,  Interpolation errors and two refinement strategies for tetrahedra, 11th International Conference on Domain Decomposition,  Greenwich, UK, July 1998.
  118. Igor Tsukerman and Alexander Plaks, Hierarchical basis multilevel preconditioners for 3D magnetostatic problems, IEEE CEFC Conference, Tucson AZ, 1998.
  119. Igor Tsukerman and Alexander Plaks, Refinement strategies and approximation errors for tetrahedral elements, IEEE CEFC Conference, Tucson AZ, 1998
  120. I.A.Tsukerman, Alexander Plaks, H.N. Bertram, Multigrid methods for computation of magnetostatic fields in magnetic recording problems, 7th Joint  MMM-Intermag Conference, San Francisco, January 1998.
  121. Igor Tsukerman, A. Bossavit, Shape of finite elements and approximation in electro-magnetics, Proceedings of the International Symposium ISTET’97,  Palermo, Italy, June 1997.
  122. I.A. Tsukerman, Alexander Plaks, Comparison of accuracy criteria for approximation of conservative fields on tetrahedra,  Compumag’97, Rio de Janeiro, 1997.
  123. I.A. Tsukerman, A general accuracy criterion for finite element approximation, Compumag’97, Rio de Janeiro, 1997.
  124. I.A. Tsukerman,  Approximation of conservative fields and the element ‘edge shape matrix’, Compumag’97, Rio de Janeiro, 1997.
  125. I.A. Tsukerman, Stability of the moment method in electromagnetic problems, IEEE CEFC Conference, Okayama, Japan, March 1996.  http://www.eplab.elec.okayama-u.ac.jp/cefc.html
  126. I.A. Tsukerman, E. Sidoriak, J. D. Lavers, K.Weeber, H. Karmaker, Simulation of time-dependent fields and eddy currents with circuits and rotor motion in electrical machines, Proceedings of Compumag’95, Berlin, Germany, July 1995.
  127. I.A. Tsukerman, J.D. Lavers, A. Konrad, K. Weeber, H. Karmaker, Finite element analysis of static and time-dependent fields and forces in a synchronous motor, Proceedings of the International Conference on Electrical Machines, Paris, France, 1994.
  128. I.A. Tsukerman, Accurate computation of  ‘ripple solutions’ on moving finite element meshes, IEEE CEFC Conference, Aix-les-Bains, France, 1994.
  129. I.A. Tsukerman, J.D. Lavers, A. Konrad, Using complementary formulations for accurate computations of magnetostatic fields and forces in a synchronous motor, Compumag’93,  Miami, FL, November 1993.
  130. I.A. Tsukerman, Application of multilevel preconditioners to finite element magnetostatic problems, Compumag’93, Miami, FL, November 1993.
  131. I.A. Tsukerman, Fast finite element solvers for problems with magnetic materials, Intermag’93, Stockholm, Sweden, 1993.
  132. I.A. Tsukerman, Node and edge element approximation of discontinuous fields and potentials, Intermag’93, Stockholm, Sweden, 1993.
  133. I.A. Tsukerman, A. Konrad, G. Meunier and J.C. Sabonnadiere, Coupled field-circuit problems: trends and accomplishments, IEEE CEFC Conference, Harvey Mudd College, Claremont, CA, August 1992.
  134. I.A. Tsukerman, Overlapping finite elements for problems with movement, Intermag’92, St. Louis, MO, 1992.
  135. Yu.P. Kizimovich, I.A. Tsukerman, Numerical modelling of the 3 D quasi stationary field on the basis of the “optimal” formulation, Proceedings of the third conference “Problemy nelineynoj elektrotekhniki”. Part 3. Kiev, USSR, 1988, pp.57 60 [in Russian].
  136. G.M. Khutoretsky, V.D. Varshavsky, I.A. Tsukerman, Yu.P. Kizimovich, I.N. Greenbaum, V.I. Leonov, Investigation of electromagnetic processes in the 300 MW superconducting turbine generator, Proceedings of  the 9th international conference “Cryogenics 88”, Usti na Labe, Czechoslovakia, 1988, pp.11-18 [in Russian].
  137. K.S. Demirchian, Yu.V. Rakitsky, Yu.P. Kizimovich, I.A. Tsukerman, Computation of the 3 D electromagnetic fields by means of the scalar potential method: numerical methods and software, Proceedings of the First Conference on Theoretical Electrical Engineering, Tashkent, USSR, 1987, pp.67-68 [in Russian].
  138. Yu.P. Kizimovich, I.A. Tsukerman, Mathematical modelling of the 3 D electromagnetic field under steady state and transient conditions by means of the scalar magnetic potential,  Proceedings of the First Conference on Theoretical Electrical Engineering, Tashkent, USSR, 1987, p.149 [in Russian].
  139. Yu.V. Rakitskii, Yu.P. Kizimovich, I.A. Tsukerman, A program package for electromagnetic field computations in axially symmetric domains, Proceedings of the seminar “Computational Methods and Mathematical Modeling”, Krasnoyarsk, USSR, 1986, p.69 [in Russian].
  140. Yu.P. Kizimovich, I.A. Tsukerman, Numerical modeling of the spatially periodic quasi stationary electromagnetic field, in: Modern Problems of Power Engineering, Kiev, USSR, 1985, pp.121-123 [in Russian].

Other Papers

  1. Igor Tsukerman, The anatomy of negative refraction, The International Compumag Society Newsletter (ISSN 1026-0854), vol. 14, No. 3, November 2007, pp. 3-16.
  2. Igor Tsukerman, Negative refraction requires strong inhomogeneity,  http://arxiv.org/abs/0710.0011
  3. Igor Tsukerman, A new FD calculus: simple grids for complex problems, The International Compumag Society Newsletter (ISSN 1026-0854), vol. 12, No. 2, July 2005,  pp. 3-17.
  4. I.A. Tsukerman, L.B. Proekt, Generalized scalar and vector elements for electromagnetic computation, The International Compumag Society Newsletter (ISSN 1026-0854), vol. 8, No. 2, July 2001, pp.6-12.
  5. Igor Tsukerman, A paradox of two rods, The International Compumag Society Newsletter (ISSN 1026-0854), vol. 8, No. 2, July 2001, p. 21.
  6. Igor Tsukerman, How flat are flat elements? The International Compumag Society Newsletter (ISSN 1026-0854), vol. 5, No. 1, March 1998, pp. 7-12.
Optics Letters Optics Express Plasmonics and Plasmonic Metamaterials Computational Methods for Nanoscale Applications Magnetics Physical Review B Physical Review E Optical Physics Siam Review